首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
Crystal structures of boron‐rich solids are characterized by boron atom arrangements that are quite diverse: chains, sheets, and a variety of polyhedra like octahedra, pentagonal bipyramids, cuboctahedra, and icosahedra are observed. Probing by electron energy‐loss spectroscopy (EELS), these different structural features are mirrored by a pronounced variation of the energy loss near‐edge fine structure (ELNES) of the BK ionization edges. For identification, characteristics of these fine structures can be used as so‐called “coordination fingerprints”, which is shown for solids like MgB2, TaB2, ZrB2, CaB6, SrB6, BaB6, NaB5C, KB5C, Na3B20, Na2B29, UB12, ZrB12, LaB2C2, CeB2C2, and CaB2C2. In addition, theoretical calculations of ELNES based on the density functional theory (FLAPW method) are presented for an example of boron‐rich solids.  相似文献   

2.
We present synthesis, crystal structure, hardness, and IR/Raman and UV/Vis spectra of a new compound with the mean composition LiB12PC. Transparent single crystals were synthesised from Ga, Li, B, red phosphorus and C at 1500 °C in boron nitride crucibles welded in Ta ampoules. Depending on the type of boron used for the synthesis we obtained colourless, brown and red single crystals with slightly different P/C ratios. Colourless LiB12PC crystallizes orthorhombic in the space group Imma (No. 74) with a=10.188(2) Å, b=5.7689(11) Å, c=8.127(2) Å and Z=4. Brown LiB12P0.89C1.11 is very similar, but with a lower P content. Red single crystals of LiB12P1.13C0.87 have a larger unit cell with a=10.4097(18) Å, b=5.9029(7) Å, c=8.2044(12) Å. EDX measurements confirm that the red crystals contain more phosphorus than the other ones. The crystal structure is characterized by a covalent network of B12 icosahedra connected by exohedral B? B bonds and P? P, P? C or C? C units. Li atoms are located in interstitials. The structure is closely related to MgB7, LiB13C2 and ScB13C. LiB12PC fulfils the electron counting rules of Wade and also Longuet‐Higgins. Measurements of Vickers micro‐hardness (HV=27 GPa) revealed that LiB12PC is a hard material. The optical band gaps obtained from UV/Vis spectra match the colours of the crystals. Furthermore we report on the IR and Raman spectra.  相似文献   

3.
Using density functional theory, the generalized gradient approximation for the exchange‐correlation potential and Møller–Plesset perturbation theory we study the hydrogen uptake of Li‐ and Mg‐doped boranes. Specifically, we calculate the structures and binding energies of hydrogen molecules sequentially attached to LiB6H7, LiB12H13, Li2B6H6, Li2B12H12, MgB6H6, and MgB12H12. Up to three H2 molecules can be bound quasi‐molecularly to each of the metal cations with binding energies per H2 molecule ranging between 0.07 eV and 0.27 eV. The corresponding gravimetric densities lie in the range of 3.49 to 12 wt %, not counting the H atoms bound chemically to the B atoms.  相似文献   

4.
An intriguing structural transition from the quasi‐planar form of B12 cluster upon the interaction with lithium atoms is reported. High‐level computations show that the lowest energy structures of LiB12, Li2B12, and Li3B12 have quasi‐planar (Cs), tubular (D6d), and cage‐like (Cs) geometries, respectively. The energetic cost of distorting the B12 quasi‐planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage‐like B12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li2B12) and cage‐like (Li3B12) boron structures reported to date.  相似文献   

5.
The structure of a new magnesium nitridoboride, MgNB9, has been refined from single‐crystal X‐ray data. The Mg and N atoms lie on sites with crystallographic 3m symmetry. The structure consists of two layers alternating along the c axis. The NB6 layer, with B12 icosahedra, has the C2B13 structure type. Within this layer, boron icosahedra are bonded to N atoms, each coordinating to three boron polyhedra. Another MgB3 layer, with B6 octahedra, does not belong to any known structure type. The boron icosahedra and octahedra are connected to each other, thus forming a three‐dimensional boron framework.  相似文献   

6.
MgB2 and MgB4 have been prepared at high temperature in sealed molybdenum vessels from mixtures of the elements. The utilization of an excess of metal in the vessel generates a pressure of magnesium vapor which inhibits thermal decomposition of the compounds during the synthesis. The structure of MgB4 has been established from single crystal data collected on an automatic diffractometer. MgB4 is orthorhombic, space group Pnam with a = 5.464; b = 7.472; c = 4.428Å and Z = 4. The structure of MgB4, is based on chains of boron pentagonal pyramids in which the averaged BB bond is 1.787 Å. Interchain BB bonds of 1.730 Å are responsible for the three-dimensional boron framework. The Mg atoms, located in tunnels, form zigzag chains. The structure of MgB4 is compared to those of ThB4 and CrB4; it is concluded that the size of the metal atom plays an important role in the nature of the boron framework which exists. In MgB4, the fundamental unit of the boron skeleton is a pentagonal pyramid; a new feature, in boron-rich borides where this type of coordination polyhedron was previously found only in B12 icosahedra.  相似文献   

7.
A class of polymeric compounds containing boron–boron triple bonds stabilized by N‐heterocyclic biscarbenes is proposed. Since a triply bonded B2 is related to its third excited state, the predicted macromolecule would be composed by several units of an electronically excited first‐row homonuclear dimer. Moreover, it is shown that the replacement of biscarbene with N2 or CO as spacers could change the bonding profile of the boron–boron units to a cumulene‐like structure. Based on these results, different types of diboryne polymers are proposed, which could lead to an unprecedented set of boron materials with distinct physical properties. The novel diboryne macromolecules could be synthesized by the reaction of Janus‐type biscarbenes with tetrabromodiborane, B2Br4, and sodium naphthalenide, [Na(C10H8)], similarly to Braunschweig’s work on the room temperature stable boron–boron triple bond compounds (Science, 2012 , 336, 1420).  相似文献   

8.
o‐Carborane (C2B10H12) was adapted to perform as the core of globular macromolecules, dendrons or dendrimers. To meet this objective, precisely defined substitution patterns of terminal olefin groups on the carborane framework were subjected to Heck cross‐coupling reactions or hydroboration leading to hydroxyl terminated arms. These led to new terminal groups (chloro, bromo, and tosyl leaving groups, organic acid, and azide) that permitted ester production, click chemistry, and oxonium ring opening to be performed as examples of reactions that demonstrate the wide possibilities of the globular icosahedral carboranes to produce new dendritic or dendrimer‐like structures. Polyanionic species were obtained in high yield through the ring‐opening reaction of cyclic oxonium compound [3,3′‐Co(8‐C4H8O2‐1,2‐C2B9H10)(1′,2′‐C2B9H11)] by using terminal hydroxyl groups as nucleophiles. These new polyanionic compounds that contain multiple metallacarborane clusters at their periphery may prove useful as new classes of compounds for boron neutron capture therapy with enhanced water solubility and as cores to make a new class of high‐boron globular macromolecules.  相似文献   

9.
Electron‐deficient small boron rings are unique in their formation of σ‐ and π‐delocalized electron systems as well as the avoidance of “classical” structures with two‐center‐two‐electron (2c,2e) bonds. These rings are tolerant of several skeletal electron numbers, which makes their redox chemistry highly interesting. In the past few decades, a range of stable compounds have been synthesized with various electron numbers in their B3 and B4 cores. The electronic structures were evaluated by quantum‐chemical calculations. On the other hand, the chemistry of these rings is still very much underdeveloped, being generally limited to the protonation and redox reactions of individual systems. The linkage of several B3 and/or B4 ring systems should give compounds with attractive electronic properties, thus leading the way to novel boron‐based materials. By summarizing important experimental and theoretical results, this Review intends to provide the basis for the exploration of the chemistry of these rings and, in particular, their integration into larger molecular architectures.  相似文献   

10.
Hückel π aromaticity is typically a domain of carbon‐rich compounds. Only very few analogues with non‐carbon frameworks are currently known, all involving the heavier elements. The isolation of the triboracyclopropenyl dianion is presented, a boron‐based analogue of the cyclopropenyl cation, which belongs to the prototypical class of Hückel π aromatics. Reduction of Cl2BNCy2 by sodium metal produced [B3(NCy2)3]2?, which was isolated as its dimeric Na+ salt (Na4[B3(NCy2)3]2?2 DME; 1 ) in 45 % yield and characterized by single‐crystal X‐ray diffraction. Cyclic voltammetry measurements established an extremely high oxidation potential for 1 (Epc=?2.42 V), which was further confirmed by reactivity studies. The Hückel‐type π aromatic character of the [B3(NCy2)3]2? dianion was verified by various theoretical methods, which clearly indicated π aromaticity for the B3 core of a similar magnitude to that in [C3H3]+ and benzene.  相似文献   

11.
It has been a long‐sought goal in cluster science to discover stable atomic clusters as building blocks for cluster‐assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses. 1 , 2 Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid‐state chemistry. 3 Because of its electron deficiency, boron is an interesting element with unusual polymorphism. While bulk boron is known to be dominated by the three‐dimensional (3D) B12 icosahedral motifs, 4 new forms of elemental boron are continuing to be discovered. 5 In contrast to the 3D cages commonly found in bulk boron, in the gas phase two‐dimensional (2D) boron clusters are prevalent. 6 8 The unusual planar boron clusters have been suggested as potential new bulking blocks or ligands in chemistry. 6a Herein we report a joint experimental and theoretical study on the [Ta2B6] and [Ta2B6] clusters. We found that the most stable structures of both the neutral and anion are D6h bipyramidal, similar to the recently discovered MB6M structural motif in the Ti7Rh4Ir2B8 solid compound. 9   相似文献   

12.
Common wisdom has it that organoboranes are readily oxidized. Described herein is that also their reduction can result in remarkable chemistry. Treatment of dimeric 9H‐9‐borafluorene with Li metal in toluene yields two strikingly different classes of compounds. One part of the sample reacts in a way similar to B2H6, thus affording an aryl(hydro)borane cluster reminiscent of the [B3H8]? anion. The other part furnishes a dianionic boron‐doped graphene flake devoid of hydrogen substituents at the boron centers and featuring a central B?B bond. A change in the solvent to THF allows an isolation of this dibenzo[g,p]chrysene analogue in good yields.  相似文献   

13.
The crystal structures of numerous iodinated ortho‐carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature—mostly as it relates to hydrogen and/or halogen bonds—and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho‐carboranes: 9‐I‐1,2‐closo‐C2B10H11, 4,5,7,8,9,10,11,12‐I8‐1,2‐closo‐C2B10H4, 3,4,5,6,7,8,9,10,11,12‐I10‐1,2‐closo‐C2B10H2, 1‐Me‐8,9,10,12‐I4‐1,2‐closo‐C2B10H7, 1,2‐Me2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6, and 1,2‐Ph2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6. Their 3D supramolecular organization has been thoroughly investigated and compared to similar previously published crystal structures. Such a systematic survey has allowed us to draw some general trends. Cc? H???I? B hydrogen bonds (Cc= cluster carbon atoms) appear to be significant in the growth of the crystal lattices of these compounds, given the acidity of hydrogen atoms bonded to Cc, and the polarization of B? I bonds. These hydrogen bonds can be disrupted by selectively blocking the positions next to Cc, that is, B(3) and B(6), with bulky substituents that prevent iodine atoms from approaching as hydrogen acceptors. Halogen bonds of the type B? I???I? B are frequently observed in most cases, thus suggesting that these interactions could be attractive in boron clusters. In addition, different substituents can be grafted onto the ortho‐carborane surface, thereby providing further possibilities for homomeric or heteromeric molecular assembly.  相似文献   

14.
Many transition‐metal complexes and some metal‐free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C?O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal‐free perborylated C1 and C2 products, such as C(Bpin)4 and C2(Bpin)6, respectively, which have great potential as building blocks for Suzuki–Miyaura cross‐coupling and other reactions. The use of 13CO‐enriched ruthenium carbonyl has demonstrated that the boron‐bound carbon atoms of all of these reaction products arise from CO ligands.  相似文献   

15.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40−/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402−), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

16.
(Solid+Liquid) phase equilibria in the quaternary system Na2B4O7‐MgB4O7‐K2B4O7‐H2O at 288 K were studied experimentally using the method of isothermal solution saturation. Solubility of any single salt in the solution of the quaternary system was determined experimentally. Based on the experimental data achieved, the phase diagram and water content diagram of the quaternary system were constructed, respectively. In the phase equilibrium diagram of the quaternary system Na2B4O7‐MgB4O7‐K2B4O7‐H2O at 288 K, there are one invariant point E, three univariant curves E1E, E2E and E3E, and three fields of crystallization corresponding to Na2B4O7·10H2O, K2B4O7·4H2O and MgB4O7·9H2O. The experimental results show that potassium borate (K2B4O7·4H2O) have higher solubilities than the magnesium borate and sodium borate in the quaternary system Na2B4O7‐MgB4O7‐K2B4O7‐H2O at 288 K.  相似文献   

17.
Borinium ions, that is, two‐coordinate boron cations, are the most electron‐deficient isolable boron compounds. As borinium ions have only four formal valence electrons on boron, they should show a strong tendency to accept electron pairs on the boron atom to fill its valence shell. Thus chemical reactions of borinium ions are expected to give products in which the coordination number of boron is increased from two to three or four. However, contrary to this expectation, we found that the dimesitylborinium ion (Mes2B+) undergoes twofold 1,2‐carboboration reactions with two equivalents of diphenylacetylene to yield an unprecedented borinium ion ( 1 +) with two substituted vinyl groups on the boron center. NMR spectroscopy and X‐ray diffraction analysis of 1 +, together with electronic‐structure calculations, revealed that the positive charge is delocalized over the entire π‐conjugated system. The fact that the chemical transformation of a borinium ion gives rise to a different borinium ion without a change in the coordination number is remarkable and should provide new insight into the chemistry of the Group 13 elements.  相似文献   

18.
Two sets of o‐carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene‐containing carboranes 6 – 9 , was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1‐[(9,9‐dioctyl‐fluorene‐2‐yl)ethynyl]carborane ( 11 ) was synthesized by the reaction of 9,9‐dioctyl‐2‐ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4‐(chloromethyl)styrene or 9‐(chloromethyl)anthracene yielded compounds 12 and 13 . Members of the second set of derivatives, comprising anthracene‐containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1‐Me‐1,2‐C2B10H11, 1‐Ph‐1,2‐C2B10H11, and 1,2‐C2B10H12 with 1 or 2 equivalents of 9‐(chloromethyl)anthracene, respectively, to produce compounds 14 – 16 . In addition, 2 equivalents of the monolithium salts of 1‐Me‐1,2‐C2B10H11 (Me‐o‐carborane) and 1‐Ph‐1,2‐C2B10H11 (Ph‐o‐carborane) were reacted with 9,10‐bis(chloromethyl)anthracene to produce compounds 17 and 18 , respectively. Fluorene derivatives 6 – 9 exhibit moderate fluorescence quantum yields (32–44 %), whereas 11 – 13 , in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me‐o‐carborane moiety exhibit notably high fluorescence emissions, with ?F=82 and 94 %, whereas their Ph‐o‐carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc?Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene‐containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the substituent on the adjacent Cc.  相似文献   

19.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40?/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402?), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

20.
Metal compounds with heteroatomic ring systems of main group elements are a domain of coordination chemistry. However, lanthanide nitrido borates Ln3B3N6 (Ln=La or Ce; see structure) are synthesized by the reaction of hexagonal boron nitride with LnN. The compounds contain the six-membered B3N6 ring, which can be seen as a fragment from one layer of the hexagonal BN structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号