首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel polymeric complexes catena‐poly[[diaquamanganese(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′‐[diaquamanganese(II)]‐bis(μ‐terephthalato‐κ2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena‐poly[[[aquacopper(II)]‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐copper(II)‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐[aquacopper(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2′‐bipyrimidine (bpym) ligands coordinated as bis‐chelates, have been prepared via a ligand‐exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2−) anions were found. In (I), two tpht2− anions acting as bis‐monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2− anions act as endo‐bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one‐dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry ). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face‐to‐face π–π interactions [in (I)], forming three‐dimensional metal–organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges.  相似文献   

2.
A new polymeric copper complex, viz.catena‐poly[[[μ‐N,N′‐bis(3‐amino­propyl)oxa­mid­ato‐κ6N,N′,O:N′′,N′′′,O′]­dicopper(II)]‐di‐μ‐dicyan­amido‐1:1′κ2N1:N5;2:2′κ2N1:N5], [Cu2(C8H16N4O2)(C2N3)2]n or [Cu(oxpn)0.5{N(CN)2}]n [where H2oxpn is N,N′‐bis(3‐amino­propyl)­ox­amide], has been ­synthesized by the reaction of Cu(oxpn), [Cu(ClO4)2]·6H2O and NaN3. In the crystal structure, the Cu atom is five‐coordinate and has a square‐pyrimidal (SP) configuration. In the polymer, dicyan­amide (dca) groups link CuII cations in a μ‐1,5‐bridging mode, generating novel ladders in which each step is composed of dimeric [Cu2(oxpn)]2+ cations. Abundant hydrogen bonds connect the polymer ladders into a two‐dimensional network structure.  相似文献   

3.
The title compound, [Hg(C4H4N2S)(C4H3N2S)]2[HgBr4], con­sists of [Hg(pymt)(pymtH)]+ complex cations (pymtH is pyrimidine‐2‐thione) lying across twofold rotation axes in space group Fddd, with linearly coordinated mercury at an Hg—S distance of 2.357 (3) Å, and [HgBr4]2− anions lying at sites of 222 symmetry. The Hg atom is additionally coordinated by two N and two Br atoms, forming a 2+4 effective coordination sphere. The protonated ligand is connected via N—H⋯N hydrogen bonds to the neighbouring unprotonated ligand, thus forming infinite chains of cations.  相似文献   

4.
The structure of the title compound, catena‐poly[[cadmium(II)‐di‐μ‐chlorido‐μ‐(1,4‐diazoniabicyclo[2.2.2]octane‐1‐carboxylato)] [[aquachloridocadmium(II)]‐di‐μ‐chlorido] dihydrate], {[Cd(C8H15N2O2)Cl2][CdCl3(H2O)]·2H2O}n, contains two kinds of independent one‐dimensional chain, viz. {[Cd(C8H15N2O2)Cl2]+}n and {[CdCl3(H2O)]}n, and uncoordinated water molecules. Each CdII cation in the {[Cd(C8H15N2O2)Cl2]+}n chain is octahedrally coordinated by two pairs of bridging chloride ligands and two O atoms from different bridging carboxylate groups. CdII cations in the {[CdCl3(H2O)]}n chain are also octahedrally surrounded by four bridging chloride ligands, one terminal chloride ligand and one coordinated water molecule. Hydrogen bonds between solvent water molecules and these two independent chains generate a three‐dimensional framework containing two‐dimensional zigzag layers.<!?tpb=18pt>  相似文献   

5.
We report on the synthesis of a new metal–organic framework (MOF) composed of Sn(OCH3)2–tetrakis(pyridin‐4‐yl)porphyrin linkers, Cu+ connecting nodes and [CuCl2] counter‐ions, namely poly[[bis(methanolato‐κO)[μ5‐5,10,15,20‐tetrakis(pyridin‐4‐yl)porphyrin‐κ8N5:1′κN10:1′′κN15:1′′′κN20:2κ4N21,N22,N23,N24]copper(I)tin(II)] dichloridocuprate(I)], [CuSn(C40H24N8)(CH3O)2][CuCl2]. Its crystal structure consists of a single‐framework coordination polymer of the organic ligand and the CuI ions. The latter are characterized by a tetrahedral coordination geometry [with CN (coordination number) = 4], linking to the pyridyl N‐atom sites of four different ligands and imparting to the positively charged polymeric assembly a diamondoid PtS‐type topology. Correspondingly, every porphyrin unit is coordinated to four different CuI connectors. The [CuCl2] anions occupy the intra‐lattice voids, along with disordered molecules of the water crystallization solvent. The asymmetric unit of this structure consists of two halves of the porphyrin scaffold, located on centres of crystallographic inversion, and the Cu+ and [CuCl2] ions. This report provides unique structural evidence for the formation of tetrapyridylporphyrin‐based three‐dimensional MOFs with a diamondoid architecture that have been observed earlier only on rare occasions.  相似文献   

6.
The kinetics and thermodynamics of O2 addition to CoII complexes containing the simple triamine ligand (L) diethylenetriamine (=N‐(2‐aminoethyl)ethane‐1,2‐diamine; dien) or N,N″‐dimethyldiethylenetriamine (=N‐methyl‐N′‐[2‐(methylamino)ethyl]ethane‐1,2‐diamine; dmdien) in the aprotic solvent dimethyl sulfoxide (DMSO) were studied by UV/VIS spectrophotometry, potentiometry, and O2 absorption measurements. A parallel investigation on the anaerobic formation of CoII complexes with dmdien, as well as on their reactivity towards O2, was carried out in aqueous 0.1M NaClO4 solution. [CoL]2+ and [CoL2]2+ were the common species formed under anaerobic conditions in both aqueous and DMSO solutions. Under aerobic conditions, O2 adducts of different stoichiometry were formed: a superoxo complex [CoL2O2]2+ in DMSO and dimeric species in H2O. The role of the reaction medium as well as effects of N‐alkylation of the triamine ligand in the formation and reactivity of the [CoII(triamine)] complexes are discussed.  相似文献   

7.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

8.
The cationic complex [Fe(P2S2)(NCMe)2]2+ (P2S2=(Ph2PC6H4CH2S)2(C2H4) ([ 1 (NCMe)2]2+)), with two MeCN ligands in a cis orientation, was synthesized and characterized. The MeCN ligand in [ 1 (NCMe)2]2+ undergoes further substitution by a hydride ligand or CO to give iron(II) hydrides [H 1 (NCMe)]+, [H 1 H]0, and [H 1 (CO)]+. The order of reactivity of the hydrides was [H 1 H]0>[H 1 (NCMe)]+>[H 1 (CO)]+, and was illustrated by their reactions toward protic acids, the organic cation of 10‐methylacridinium (MeAcr+) as a hydride acceptor, and intermolecular hydride transfer reactions among these ferrous compounds. For example, MeAcr+ was reduced initially by a one‐electron transfer process from [H 1 H]0, resulting in competing reactions of MeAcr. dimerization, hydrogen atom transfer from [H 1 H]+ to MeAcr., and decomposition of [H 1 H]+. MeAcrH was produced in excellent yields through a single‐step H? transfer from [H 1 (NCMe)]+ to MeAcr+, but [H 1 (CO)]+ was inactive toward MeAcr+.  相似文献   

9.
Reaction of ZnII and CdII thiocyanate or selenocyanate with pyrazine leads to the formation of new ZnII and CdII coordination compounds. The structures of [Zn(NCSe)2(pyrazine)2]n ( 1A ), [Cd(NCS)2(pyrazine)2]n ( 2A ) and [Cd(NCSe)2(pyrazine)2]n ( 3A ) consist of octahedrally coordinated metal cations which are surrounded by two terminal N‐bonded anions and two μ2‐bridging pyrazine molecules. The metal cations are connected via the pyrazine ligands into layers, which are further linked by weak intermolecular S···S respectively Se···Se interactions. Investigations on the thermal degradation behavior of 1A , 2A , and 3A using simultaneous differential thermoanalysis and thermogravimetry as well as X‐ray powder diffraction, IR‐ and Raman spectroscopy prove that on heating, the pyrazine‐rich compound 1A decomposes in one step into zinc selenocyanate without the formation of a pyrazine‐deficient intermediate. In contrast, for compounds 2A and 3A a stepwise decomposition is observed, leading to the formation of the pyrazine‐deficient compounds [Cd(NCS)2(pyrazine)]n ( 2B‐I and 2B‐II ) and [Cd(NCSe)2(pyrazine)]n ( 3B ) as intermediates. The structures and the thermal reactivity are discussed and compared with that of related transition metal thiocyanates and selenocyanates with pyridine as N‐donor ligand.  相似文献   

10.
The synthesis of the reactive PN(CH) ligand 2‐di(tert‐butylphosphanomethyl)‐6‐phenylpyridine ( 1H ) and its versatile coordination to a RhI center is described. Facile C?H activation occurs in the presence of a (internal) base, thus resulting in the new cyclometalated complex [RhI(CO)(κ3P,N,C‐ 1 )] ( 3 ), which has been structurally characterized. The resulting tridentate ligand framework was experimentally and computationally shown to display dual‐site proton‐responsive reactivity, including reversible cyclometalation. This feature was probed by selective H/D exchange with [D1]formic acid. The addition of HBF4 to 3 leads to rapid net protonolysis of the Rh?C bond to produce [RhI(CO)(κ3P,N,(C?H)‐ 1 )] ( 4 ). This species features a rare aryl C?H agostic interaction in the solid state, as shown by X‐ray diffraction studies. The nature of this interaction was also studied computationally. Reaction of 3 with methyl iodide results in rapid and selective ortho‐methylation of the phenyl ring, thus generating [RhI(CO)(κ2P,N‐ 1Me )] ( 5 ). Variable‐temperature NMR spectroscopy indicates the involvement of a RhIII intermediate through formal oxidative addition to give trans‐[RhIII(CH3)(CO)(I)(κ3P,N,C‐ 1 )] prior to C?C reductive elimination. The RhIIItrans‐diiodide complex [RhI(CO)(I)23P,N,C‐ 1 )] ( 6 ) has been structurally characterized as a model compound for this elusive intermediate.  相似文献   

11.
The reaction of [FeL(MeOH)2] {where L is the tetradentate N2O2‐coordinating Schiff base‐like ligand (E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoate)(2−) and MeOH is methanol} with 3‐aminopyridine (3‐apy) in methanol results in the formation of the octahedral complex (3‐aminopyridine‐κN1){(E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoato)(2−)‐κ4O3,N,N′,O3′}(methanol‐κO)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3‐apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octahedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin‐crossover behavior. An infinite two‐dimensional hydrogen‐bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T‐dependent susceptibility measurements revealed that the complex remains in the high‐spin state over the entire temperature range investigated.  相似文献   

12.
The intramolecular gas‐phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands ( L ) has been studied by means of tandem mass spectrometry measurements in which the gas‐phase ions [FeIV(O)( L )(OTf)]+ (OTf=trifluoromethanesulfonate) and [FeIV(O)( L )]2+ were isolated and then allowed to fragment by collision‐induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (tmc) and N,N′‐bis(2‐pyridylmethyl)‐1,5‐diazacyclooctane ( L 8Py2) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N′‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane (bpmen) and N,N′‐bis(2‐pyridylmethyl)‐1,3‐diaminopropane (bpmpn) showed predominant oxidative N‐dealkylation for the hexacoordinate [FeIV(O)( L )(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)( L )]2+ cations. DFT calculations on [FeIV(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N‐dealkylation versus dehydrogenation of the diaminoethane linker for the hexa‐ and pentacoordinate ions, respectively, is dictated by the proximity of the target C? H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σCH–σ* overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa‐ and pentacoordinate complexes.  相似文献   

13.
The ion‐pair SN2 reactions of model systems MnFn?1+CH3Cl (M+=Li+, Na+, K+, and MgCl+; n=0, 1) have been quantum chemically explored by using DFT at the OLYP/6‐31++G(d,p) level. The purpose of this study is threefold: 1) to elucidate how the counterion M+ modifies ion‐pair SN2 reactivity relative to the parent reaction F?+CH3Cl; 2) to determine how this influences stereochemical competition between the backside and frontside attacks; and 3) to examine the effect of solvation on these ion‐pair SN2 pathways. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. The ASM has been extended to treat reactivity in solution. These findings contribute to a more rational design of tailor‐made substitution reactions.  相似文献   

14.
Two cadmium halide complexes, catena‐poly[[chloridocadmium(II)]‐di‐μ‐chlorido‐[chloridocadmium(II)]‐bis[μ2‐4‐(dimethylamino)pyridin‐1‐ium‐1‐acetate]‐κ3O:O,O′;κ3O,O′:O], [CdCl2(C9H12N2O2)]n, (I), and catena‐poly[1‐cyanomethyl‐1,4‐diazoniabicyclo[2.2.2]octane [[dichloridocadmium(II)]‐μ‐oxalato‐κ4O1,O2:O1′,O2′] monohydrate], {(C8H15N3)[CdCl2(C2O4)]·H2O}n, (II), were synthesized in aqueous solution. In (I), the CdII cation is octahedrally coordinated by three O atoms from two carboxylate groups and by one terminal and two bridging chloride ligands. Neighbouring CdII cations are linked together by chloride anions and bridging O atoms to form a one‐dimensional zigzag chain. Hydrogen‐bond interactions are involved in the formation of the two‐dimensional network. In (II), each CdII cation is octahedrally coordinated by four O atoms from two oxalic acid ligands and two terminal Cl ligands. Neighbouring CdII cations are linked together by oxalate groups to form a one‐dimensional anionic chain, and the water molecules and organic cations are connected to this one‐dimensional zigzag chain through hydrogen‐bond interactions.  相似文献   

15.
Synthesis and physicochemical properties of four pyridinium‐based ionic liquids (ILs), N‐propylpyridinium bromide [N‐propylPyr]+[Br], N‐isopropylpyridinium bromide [N‐isopropylPyr]+[Br], N‐propylpyridinium hexafluorophosphate [N‐propylPyr]+[PF6], and N‐isopropylpyridinium hexafluorophosphate [N‐isopropylPyr]+[PF6] are reported. The molecular structures of these compounds were characterized by FT‐IR, 1H, 19F, and 31P NMR, spectroscopy. The thermal properties, conductivity, and solubility of these ionic liquids were also investigated. The effects of propyl and isopropyl alkyl lateral chain at the N‐position of pyridinium cation on the thermal stability, conductivity, and solubility of ionic liquids are discussed. The results obtained confirmed that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low melting points, immiscible with water, and their conductivities are mainly influenced by mobility of ions.  相似文献   

16.
N,N′‐dioxide ligands such as 2, 2′‐bipyridine‐N,N‐dioxide (BPDO‐I) and 4, 4′‐bipyridine‐N,N‐dioxide (BPDO‐II) were used to trap the hydrated dimethyltin cations under controlled hydrolysis. The use of the chelating ligand BPDO‐I leads to the isolation of the discrete monocation [Me2Sn(BPDO‐I)(OH2)(NO3)]+[NO3] ( 2 ), whereas the linear ligand BPDO‐II directs the construction of cationic polymers, [{Me2Sn(OH2)2(μ‐BPDO‐II)}2+{NO3}2 · 2H2O]n ( 3· 2H2O) and [{Me2Sn(μ‐OH)(BPDO‐II)}22+{NO3}2 · H2O]n ( 4· H2O) under different reaction conditions.  相似文献   

17.
In poly[di‐μ‐chlorido‐μ‐(4,4′‐bipyridazine)‐κ2N1:N1′‐cadmium(II)], [CdCl2(C8H6N4)]n, (I), and its isomorphous bromide analogue, [CdBr2(C8H6N4)]n, (II), the halide atom lies on a mirror plane and the CdII ion resides at the intersection of two perpendicular mirror planes with m2m site symmetry. The pyridazine rings of the ligand lie in a mirror plane and are related to each other by a second mirror plane perpendicular to the first. The compounds adopt the characteristic structure of the [MIIX2(bipy)] type (bipy is bipyridine) based on crosslinking of [Cd(μ‐X)2]n chains [Cd—Cl = 2.5955 (9) and 2.6688 (9) Å; Cd—Br = 2.7089 (4) and 2.8041 (3) Å] by bitopic rod‐like organic ligands [Cd—N = 2.368 (3)–2.380 (3) Å]. This feature is discussed in terms of supramolecular stabilization, implying that the periodicity of the inorganic chain [Cd...Cd = 3.7802 (4) Å in (I) and 3.9432 (3) Å in (II)] is favourable for extensive parallel π–π stacking of monodentate pyridazine rings, with centroid–centroid distances of 3.7751 (4) Å in (I) and 3.9359 (4) Å in (II). This is not the case for the longer iodide bridges, which cannot stabilize such a pattern. In poly[tetra‐μ‐iodido‐μ4‐(4,4′‐bipyridazine)‐κ4N1:N2:N1′:N2′‐dicadmium(II)], [Cd2I4(C8H6N4)]n, (III), the ligands are situated across a centre of inversion; they are tetradentate [Cd—N = 2.488 (2) and 2.516 (2) Å] and link successive [Cd(μ‐I)2]n chains [Cd—I = 2.8816 (3)–3.0069 (4) Å] into corrugated layers.  相似文献   

18.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

19.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

20.
The facile and tunable preparation of unique dinuclear [(L?)Pd?X?Pd(L?)] complexes (X=Cl or N3), bearing a ligand radical on each Pd, is disclosed, as well as their magnetochemistry in solution and solid state is reported. Chloride abstraction from [PdCl( NNOISQ )] ( NNOISQ =iminosemiquinonato) with TlPF6 results in an unusual monochlorido‐bridged dinuclear open‐shell diradical species, [{Pd( NNO ISQ)}2(μ‐Cl)]+, with an unusually small Pd‐Cl‐Pd angle (ca. 93°, determined by X‐ray). This suggests an intramolecular d8–d8 interaction, which is supported by DFT calculations. SQUID measurements indicate moderate antiferromagnetic spin exchange between the two ligand radicals and an overall singlet ground state in the solid state. VT EPR spectroscopy shows a transient signal corresponding to a triplet state between 20 and 60 K. Complex 2 reacts with PPh3 to generate [Pd(NNOISQ)(PPh3)]+ and one equivalent of [PdCl( NNOISQ )]. Reacting an 1:1 mixture of [PdCl( NNOISQ )] and [Pd(N3)( NNOI SQ)] furnishes the 1,1‐azido‐bridged dinuclear diradical [{Pd( NNO ISQ)}21‐N;μ‐N3]+, with a Pd‐N‐Pd angle close to 127° (X‐ray). Magnetic and EPR measurements indicate two independent S=1/2 spin carriers and no magnetic interaction in the solid state. The two diradical species both show no spin exchange in solution, likely because of unhindered rotation around the Pd?X?Pd core. This work demonstrates that a single bridging atom can induce subtle and tunable changes in structural and magnetic properties of novel dinuclear Pd complexes featuring two ligand‐based radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号