首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the transfer of a series of hydrophilic monovalent anions across the water/nitrobenzene (W/NB) interface has been studied by means of thin organic film-modified electrodes in combination with electrochemical impedance spectroscopy and square-wave voltammetry. The studied ions are Cl-, Br-, I-, ClO4-, NO3-, SCN-, and CH3COO-. The electrode assembly comprises a graphite electrode (GE) covered with a thin NB film containing a neutral strongly hydrophobic redox probe (decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato)) and an organic supporting electrolyte. The modified electrode is immersed in an aqueous solution containing a supporting electrolyte and transferring ions, and used in a conventional three-electrode configuration. Upon oxidation of the redox probe, the overall electrochemical process proceeds as an electron-ion charge-transfer reaction coupling the electron transfer at the GE/NB interface and compensates ion transfer across the W/NB interface. The rate of the ion transfer across the W/NB interface is the limiting step in the kinetics of the overall coupled electron-ion transfer reaction. Moreover, the transferring ion that is initially present in the aqueous phase only at a concentration lower than the redox probe, controls the mass transfer regime in the overall reaction. A rate equation describing the kinetics of the ion transfer that is valid for the conditions at thin organic film-modified electrodes is derived. Kinetic data measured with two electrochemical techniques are in very good agreement.  相似文献   

2.
将耐尔兰(Nile Blue, NB)分子修饰到碳纳米管(CNT)表面形成NB-CNT纳米复合体, 谱学结果表明, NB不仅能快速、高效地修饰到CNT表面, 而且还能有效地改善CNT在水溶液中的分散性能. 将NB-CNT修饰到玻碳(GC)电极表面制备了NB-CNT/GC电极, 循环伏安结果显示, 其伏安曲线上不仅表现出一对良好的、几乎对称的NB单体的氧化还原峰, 式量电位E0'几乎不随扫速而变化[其平均值为(-0.422±0.002) V (vs. SCE, 0.1 mol/L PBS, pH 7.0)]; 而且还显示出NB聚合体分子的氧化还原峰, E0'为-0.191 V (100 mV/s时). 进一步的实验结果表明, NB和CNT对NADH(即还原型β-烟酰胺腺嘌呤二核苷酸, 又称还原型辅酶I)的电化学氧化具有协同催化作用, 能使其氧化过电位降低多于560 mV; NB-CNT/GC电极还能较好地响应脱氢酶催化底物氧化过程中体系内NADH浓度的变化. 本文对碳纳米管功能化方法具有简单快速、电极制作容易以及催化效率高等优点, NB-CNT/GC电极有望在制作脱氢酶传感器方面得到应用.  相似文献   

3.
A novel experimental methodology for depositing and voltammetric study of Ag nanoparticles at the water-nitrobenzene (W-NB) interface is proposed by means of thin-film electrodes. The electrode assembly consists of a graphite electrode modified with a thin NB film containing decamethylferrocene (DMFC) as a redox probe. In contact with an aqueous electrolyte containing Ag(+) ions, a heterogeneous electron-transfer reaction between DMFC((NB)) and Ag(+)((W)) takes place to form DMFC(+)((NB)) and Ag deposit at the W-NB interface. Based on this interfacial reaction, two different deposition strategies have been applied. In the uncontrolled potential deposition protocol, the electrode is immersed into an AgNO(3) aqueous solution for a certain period under open circuit conditions. Following the deposition step, the Ag-modified thin-film electrode is transferred into an aqueous electrolyte free of Ag(+) ions and voltammetrically inspected. In the second protocol the deposition was carried out under controlled potential conditions, i.e., in an aqueous electrolyte solution containing Ag(+) ions by permanent cycling of the electrode potential. In this procedure, DMFC((NB)) is electrochemically regenerated at the electrode surface, hence enabling continuation and voltammetric control of the Ag deposition. Hence, the overall electrochemical process can be regarded as an electrochemical reduction of Ag(+)((W)) at the W-NB interface, where the redox couple DMFC(+)/DMFC acts as a mediator for shuttling electrons from the electrode to the W-NB interface. Ag-particles deposited at the W-NB interface affect the ion transfer across the interface, which provides the basis for voltammetric inspection of the metal deposit at the liquid-liquid interface with thin-film electrodes. Voltammetric properties of thin-film electrodes are particularly sensitive to the deposition procedure, reflecting differences in the properties of the Ag deposit. Moreover, this methodology is particularly suited to inspect catalytic activities of metal particles deposited at the liquid-liquid interface toward heterogeneous electron-transfer reactions occurring at the at the liquid-liquid interface.  相似文献   

4.
It was reported that carbon nanotube (CNT) was functionalized with the electroactive Nile blue (NB), which is a phenoxazine dye, by a method of adsorption to form a NB-CNT nanocomposite. The NB-CNT nanocomposite was characterized by several spectroscopic techniques, for example, Ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared (FTIR), Raman spectroscopy and scanning electron microscopy (SEM) etc., and the results showed that NB could rapidly and effectively be adsorbed on the surface of CNT with a high stability without changing the native structure of NB and the structure properties of CNT. Moreover, it was shown that the dispersion ability of CNT in aqueous solution had a significantly improvement after CNT functionalized with NB even at a level of high concentration, for example, 5 mg of NB-CNT per 1 mL of H2O. The NB-CNT/ glasssy carbon (GC) electrode was fabricated by modifying NB-CNT nanocomposite on the GC electrode surface and its electrochemical properties were investigated by cyclic voltammetry. The cyclic voltammetric results indicate that CNT can improve the electrochemical behavior of NB and greatly enhance its redox peak currents. While the NB-CNT/GC electrode exhibited a pair of well-defined and nearly symmetrical redox peaks with the formal potential of (−0.422±0.002) V (versus SCE, 0.1 mol/L PBS, pH 7.0), which was almost independent on the scan rates, for electrochemical reaction of NB monomer; and the redox peak potential of NB polymer located at about −0.191 V. The experimental results also demonstrated that NB and CNT could synergistically catalyze the electrochemically oxidation of NADH (β-nicotinamide adenine dinucleotide, reduced form) and NB-CNT exhibited a high performance with lowing the overpotential of more than 560 mV. The NB-CNT/GC electrode could effectively sense the concentration of NADH, which was produced during the process of oxidation of substrate (e.g. ethanol) catalyzed by dehydrogenase (e.g. alcohol dehydrogenase). The presented method for functionalization of CNT had several advantages, such as rapid and facile CNT functionalization, easy electrode fabrication and high electrocatalytic activity, etc., and could be used for fabrication electrochemical biosensor on the basis of dehydrogenase. __________ Translated from Acta Chimica Sinica, 2007, 65(1): 1–9 [译自: 化学学报]  相似文献   

5.
A novel amperometric NADH sensor was presented based on a Nile blue A (NB)/ordered mesoporous carbon (OMC) composite (NB/OMC) electrode. Cyclic voltammetric tests revealed the NB/OMC displayed a new well defined redox couple in the potential range of ?250 to 50 mV in pH 6.85 phosphate buffer. Interestingly, we found that only the new redox couple exhibited significant catalytic activity towards the oxidation of NADH. Under a lower operation potential of ?0.1 V, NADH could be linearly detected up to 350 μM with an extremely lower detection limit of 1.2 μM (S/N = 3).  相似文献   

6.
A carbon ceramic electrode modified with a redox liquid, butylferrocene, exhibiting in aqueous salt solution electrochemical behaviour resulting from the redox process of the modifier and ion transfer across the liquid-liquid interface has been prepared.  相似文献   

7.
异咯嗪蒙脱石修饰电极的电化学行为   总被引:1,自引:0,他引:1  
吴志斌  董绍俊 《电化学》1997,3(1):40-44
应用十六烷基三甲基溴化铵对蒙脱石进行改性,成功地制备稳定性良好的异咯嗪蒙脱石修饰电采,用循环伏安法对此修饰电极的电化学行为进行了研究。测定了异咯嗪在蒙脱石膜内的化学扩散系数,对异咯嗪在改性蒙脱石中电极反应机制进行了探讨。  相似文献   

8.
Ti表面修饰纳米TiO2膜电极的电催化活性   总被引:33,自引:0,他引:33  
用电化学合成法在Ti表面修饰一层纳米TiO2膜,TEM和XRD测试表明晶型为锐钛矿型,晶粒平均尺寸为25nm.用循环伏安法、循环方波伏安法和电解合成法研究了纳米TiO2膜电极在硫酸介质中的氧化还原行为以及对硝基苯还原的电催化活性。结果表明,纳米TiO2膜电极具有异相氧化还原催化行为,膜中的Ti(Ⅳ)/Ti(Ⅲ)作为媒质间接电还原硝基苯为对氨基苯酚,收率和电流效率分别达91.6%和95.2%.  相似文献   

9.
A new electrochemical method for studying the electron transfer (ET) at the oil (O)/water (W) interface (or the liquid/liquid) interface has been devised, in which the O- and W-phases are separated by an electron conductor (EC; e.g. Pt). For the EC separating O–W (ECSOW) system, the ET across the EC phase can be observed voltammetrically in a similar manner to the O/W interface, however, no ion-transfer (IT) process can be taken place. Although the ECSOW system is thermodynamically equivalent to the corresponding O/W interface, they may be different from a kinetic viewpoint. In practice, the cyclic voltammograms obtained with the nitrobenzene NB/W interface and the ECSOW system in the presence of ferrocene in NB and hexacyanoferrate in W have shown quite different features, when the concentrations of both redox species are lower. The voltammograms for the NB/W interface have strongly supported the IT mechanism which involves an interfacial transfer of ferricenium ion. Also, the ECSOW system has been shown to be promising for clarification of complicated charge-transfer processes involving biological compounds such as l-ascorbic acid.  相似文献   

10.
Characterization and electosynthesis of 3-thiopheneacetonitrile (TA) on a platinum electrode have been studied. Different solvents such as Nitrobenzene (NB), 1,2-Dichloroethane (DCE), Dichloromethane (DCM) and Acetonitrile (AN) were used. Many techniques were used for the electrodeposition of films such as potentiodynamic, chronoamperometric and galvanostatic techniques. Poly 3-thiopheneacetonitrile PTA has been subjected to relaxation effect. When the polymer is left at a potential value in its insulating state for some time, the reverse peak in the voltammetric profile during the first positive run differs from the steady state wave. The effect of solvent on the relaxation of the polymer has been studied. A weak or no relaxation was found by using different solvents such as NB, DCE, and DCM.  相似文献   

11.
利用电化学石英晶体微天平(EQCM)手段,结合循环伏安法.计时电流法对六氰亚铁铜(CuHCF)膜修饰电极及其在不同水溶液中的离子交换机制进行了研究。结果表明;通过循环伏安法,在Pt电极上可以牢固地形成CuHCF膜.在氧化还原过程中,不仅是阳离子,阴离子也参与了在CuHCF膜中的传输。  相似文献   

12.
A pair of new redox peaks of ascorbic acid at a platinum electrode was found and studied in detailed by spectroelectrochemistry and electrochemistry technologies. This is a quasi‐reversible redox reaction with a one‐electron transfer process. The intermediate of tertiary carbon free radical exists in this process. The appearance reaction rate constant and the diffusion coefficient were investigated. A possible reaction mechanism has been proposed.  相似文献   

13.
The influence of solvents on the redox behaviour of bistriphenylphosphinomercury perchlorate has been investigated by polarographic, voltammetric and potentiometric methods. The electrode process was found to be reversible in acetonitrile, propylene carbonate, N,N-dimethylformamide and dimethyl sulfoxide. An irreversible process was observed in nitromethane employing the dropping mercury electrode as well as in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone employing the rotating platinum electrode. Half wave potentials and diffusion coefficients have been measured. A linear relationship between theE 1/2 and the donor number (DN) of the solvent has been found for the reversible electrode reactions. Ligand replacement occurs in N,N-dimethylthioformamide and N-methyl-2-thiopyrrolidinone.  相似文献   

14.
A simple and selective voltammetric method based on selenium-gold film modified glassy carbon electrode has been developed for investigating electrochemical reaction mechanism of selenocystine. With N2 saturated, redox reactions between selenocystine (SeC) and selenocysteine (SeCys) were judged to be two simple electron-transfer processes. With air saturated, the reduction reaction was diagnosed to be EC catalytic reaction (the chemical oxidation reaction of the SeCys by O2 (C) following the electron-transfer reaction (E)) and oxidation reaction is a simple electron-transfer process. With pure O2 saturated, only reduction peak was observed and the reaction was judged to be EC catalytic reaction. The electron-transfer numbers of redox reaction were calculated to be 2 by chronocoulometry and rotating disk electrode.  相似文献   

15.
本文用电化学方法在Pt基体上制备出更稳定的普鲁士蓝修饰电极,可经历0.6—1.1V(Vs.SCE)之间连续一千周以上电位扫描;提出了普鲁士蓝薄膜电化学氧化还原时电子转移的多层模型;系统地研究了电极制备条件、薄膜厚度及溶液pH值对电极伏安行为的影响。  相似文献   

16.
Non-ionic surfactant vesicles (NSVs), also referred to as niosomes, have been studied as an alternative to conventional liposomes. In this paper, electrochemical inspection of the interaction between Herring sperm DNA and niosomes has been investigated after a simple and novel method for the formation of niosomes on Au electrode. Each step of electrode modification has been confirmed with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The assembly of octadecanethiol (ODT) layer on the electrode surface generates a packed film that introduces a barrier to the interfacial electron transfer (R(et)), and the subsequent immobilization of niosomes onto the self-assembled monolayer (SAM) layer results in a further increase of R(et), due to the formed bilayer almost blocked the redox probe to the electrode surface. When Herring sperm DNA was added, the R(et) value decreased, indicating that the barrier of the redox probe to the surface was disrupted. The addition of DNA caused the formation of some transmembrane channels for the redox probe across the niosomes. A good linear relationship between R(et) value and DNA concentration was found over the 0-0.05 mg mL(-1) concentration range.  相似文献   

17.
The carbon ceramic electrodes impregnated with hydrophobic organic solvent (toluene, hexadecane, nitrobenzene) containing redox probe (decamethylferrocene) were prepared. The electrode material was obtained by sol–gel process. It consists of graphite powder homogeneously dispersed in hydrophobic silica matrix. After gelation and drying it was filled with organic liquid. The electrochemical properties of the electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Approximately symmetric cyclic voltammograms were obtained with these electrodes immersed in aqueous electrolyte solution. Their shape and current magnitude and position on the potential scale depends on the organic solvent and the salt present in aqueous phase. It has been concluded that the mechanism of the electrode process involves electron transfer between graphite particle and the redox probe in organic phase, followed by anion transfer from the aqueous phase.  相似文献   

18.
A grafted polymer reference electrode (GPRE) (polystyrene grafted with acrylonitrile as a monomer using gamma irradiation) was fabricated as a reference electrode using cyclic voltammetry (CV). The redox process of K3Fe(CN)6 during CV was studied. It was found that the redox current peaks of Fe(II)/Fe(III) in 0.1 M of KCl as supporting electrolyte is given the same oxidation–reduction current as in the Ag/AgCl reference electrode, indicating a good result of GPRE and, hence, it can be used for voltammetric analysis technique. The physical properties of GPRE include good hardness, insoluble in non-aqueous electrolytes (except dimethyl formamide and chloroform), and good stability at different solvents. In addition, the sensitivity under conditions of CV is significantly dependent on the scan rate (SR) and variation in concentration. At different SRs, redox peaks of K3Fe(CN)6 were observed in a reversible process: Fe(II)/Fe(III). Interestingly, the redox reaction of Fe(II)/Fe(III) solution using GCE versus GPRE remains constant even after 15 cyclings. It is therefore evident that the GPRE possesses some degree of stability. Also, the new reference electrode GPRE has improved the properties of electroanalysis of CV on the working electrode GCE in reliability with the relative standard deviation.  相似文献   

19.
A series of organic thiolate/disulfide redox couples have been synthesized and have been studied systematically in dye-sensitized solar cells (DSCs) on the basis of an organic dye (TH305). Photophysical, photoelectrochemical, and photovoltaic measurements were performed in order to get insights into the effects of different redox couples on the performance of DSCs. The polymeric, organic poly(3,4-ethylenedioxythiophene) (PEDOT) material has also been introduced as counter electrode in this kind of noniodine-containing DSCs showing a promising conversion efficiency of 6.0% under AM 1.5G, 100 mW·cm(-2) light illumination. Detailed studies using electrochemical impedance spectroscopy and linear-sweep voltammetry reveal that the reduction of disulfide species is more efficient on the PEDOT counter electrode surface than on the commonly used platinized conducting glass electrode. Both pure and solvated ionic-liquid electrolytes based on a thiolate anion have been studied in the DSCs. The pure and solvated ionic-liquid-based electrolytes containing an organic redox couple render efficiencies of 3.4% and 1.2% under 10 mW·cm(-2) light illumination, respectively.  相似文献   

20.
The Fermi golden rule formalism has been used to derive the rate constant for interfacial electron transfer from a semimetallic electrode, such as highly ordered pyrolytic graphite (HOPG), to a redox couple in solution. A simple expression is presented that semiquantitatively relates the electron-transfer rate constant at a semimetallic electrode to that at a metallic electrode. The approach allows for the estimation of the value of the rate constant for interfacial charge transfer to nonadsorbing outer-sphere redox species at semimetallic electrodes. Rate constants for interfacial electron transfer for a variety of one-electron redox couples at semimetallic electrodes have been calculated relative to the rate constant of the ferrocenium/ferrocene redox couple at a gold electrode. Good agreement is found, in general, between the calculated and observed rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号