首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用漫反射红外和质谱在线技术对H2, H2O及甲醇在ZrO2及Cu/ZrO2上的程序升温脱附(TPD)及程序升温反应(TPSR)行为进行了研究. 结果表明, Cu/ZrO2催化剂中铜锆组分间表现出显著的氢和水组分“逆溢流”效应. 对Cu/ZrO2催化体系中ZrO2表面线式及桥式羟基物种浓度随还原预处理温度变化的进一步分析表明, 由于氢和水“逆溢流效应”的存在, 使得Cu/ZrO2在较低的还原温度下活化的同时, 在铜锆界面处形成较丰富的氧阴离子和氧空穴活性位, 而后者的形成与存在直接影响并决定了甲醇在Cu/ZrO2催化剂上的低温催化分解行为.  相似文献   

2.
The reaction of C2H6with lattice oxygen, O2- (in the absence of gaseous oxygen), or “adsorbedℍ oxygen (in the presence of gaseous oxygen) over NiMoO4 catalysts has been performed and compared to C3H8 activation. The results obtained indicate that adsorbed oxygen exhibits a higher reactivity to C2H6, while lattice oxygen is more reactive relative to C3H8. Kinetic studies of these two reactions in presence of molecular oxygen have indeed shown that the ethane oxidative dehydrogenation (ODH) is dependent on the oxygen partial pressure, whilst on the contrary propane ODH is not. In order to confirm the presence of “adsorbed” oxygen for ethane activation, ODH tests have been performed with N2O. On increasing temperature, the O- adsorbed species enhances the mild oxidation of ethane. The activation energy of ethane consumption EC2H6, relative to propane (EC3H8 = 133 kJ/mol) is 145 kJ/mol. A possible mechanism is proposed for the oxidative dehydrogenation of ethane. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.  相似文献   

4.
The oxidative dehydrogenation (ODH) of isobutane over Cr2O3/La2(CO3)3 has been investi- gated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reaction steps can be accurately determined. By heating the catalyst at a constant rate from 150-300oC, temper- ature uctuations due to non-equilibrium adsorption are minimized. The evolved gas profiles show that ODH to isobutene and water is a primary reaction pathway, while carbon dioxide, which forms from the catalyst during reaction, is the only other product. This CO2 evolution may enhance the activity of the catalyst. Isobutene formation proceeds with the participation of lattice oxygen from the Cr2O3/La2(CO3)3 catalyst. The small pre-exponential factor is expected for a concerted mechanism and for such a catalyst with a small surface area and limited porosity.  相似文献   

5.
6.
研究了MgO、Al2O3、SiO2催化剂对湿天然气中乙烷氧化脱氢反应的影响,发现MgO对乙烷脱氢有较好的活性,700C时,C2H4选择性达41.85%,收率达18.75%。考察了催化剂酸碱性对反应的影响,适当碱性的催化剂有利于反应的进行,催化剂活性顺序与碱性大小顺序相一致为MgO>Al2O3>SiO2。催化剂活性顺序与其晶格氧流动性有顺应关系。  相似文献   

7.
Catalytic partial oxidation of methane to syngas using the lattice oxygen of La1-xSrxFeO3 perovskite oxide catalysts in place of molecular oxygen was studied. La1-xSrxFeO3 (x=0, 0.1, 0.2,0.5) perovskite oxides were prepared by the "auto-combustion method". XRD analysis showed that all La1-xSrxFeO3 samples have a single-phase perovskite-type oxide. The redox properties of the catalysts were investigated by temperature programmed reduction with hydrogen (H2-TPR). Reducibility of the catalysts increase with the increasing of the Sr2+ content. The oxygen species of the catalysts and their reaction with CH4 were studied by the temperature programmed surface reaction (CH4-TPSR). In the absence of gas phase oxygen, there exist two kinds of oxygen species on the catalysts. One kind of the oxygen species with strong oxidative ability is produced first, which can oxidize CH4 completely to CO2 and H2O.Then, the second oxygen species with weak oxidative ability is formed, which can oxidize CH4 partially to CO and H2 with high selectivity. The number of the oxygen species with strong oxidative ability in the CH4-TPSR tends to become zero at low x values (x≤0.1). Under suitable reaction conditions, switching alternatively the reactions of 11% O2-Ar and 11% CH4-He over a La0.sSr0.2FeO3 catalyst at 900 ℃ allows methane to be selectively converted to synthesis gas (CH4 conversion ~90%, CO selectivity >93%) using the lattice oxygen of the perovskite oxide catalyst in a redox mode.  相似文献   

8.
The oxidative dehydrogenation (ODH) of isobutane over Cr2O3/La2(CO3)3 has been investi-gated in a low-pressure Knudsen cell reactor, under conditions where the kinetics of the primary reactionsteps can be accurately determined. By heating the catalyst at a constant rate from 150-300 ℃, temper-ature fluctuations due to non-equilibrium adsorption are minimized. The evolved gas profiles show thatODH to isobutene and water is a primary reaction pathway, while carbon dioxide, which forms from thecatalyst during reaction, is the only other product. This CO2 evolution may enhance the activity of thecatalyst. Isobutene formation proceeds with the participation of lattice oxygen from the Cr2O3/La2(CO3)3catalyst. The intrinsic Arrhenius rate constant for the ODH of isobutane isk(s-1) = 1011.5±2.2exp{-((55 ± 5) - △Hads kJmol-1)/RT}The small pre-exponential factor is expected for a concerted mechanism and for such a catalyst with asmall surface area and limited porosity.  相似文献   

9.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

10.
Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究   总被引:6,自引:0,他引:6  
利用原位XPS 和TPD MS 技术研究了Cu Ni/Zn催化剂在甲醇裂解反应中的机理和活性中心.TPD MS脱附产物中仅检测到CH3OH、H2和CO,而未发现CH4和CH3OCH3、HCOOCH3等其它含氧物种,说明在CH3OH裂解过程中仅包括O-H、C-H键的断裂,而不存在C-O键的断裂过程.In situ XPS的研究发现,在反应温度升高到200 ℃以上时,Cu/Zn催化剂中的Zn明显被还原,反映出Cu/Zn催化剂失活过程的Cu Zn合金生成过程,而在Cu Ni/Zn催化剂中未观察到Zn的还原,且表面出现Cu+/Cu0共存的现象.Cu+和Cu0很可能共同构成催化剂表面的活性中心,Cu+应该是在甲醇裂解反应过程中形成的中间态.产物氢从Cu Ni/Zn 催化剂表面脱附为反应的控速步骤.  相似文献   

11.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

12.
采用表面反应改性法制备了V2O5 SiO2(VSiO)表面复合物 ,用等体积浸渍法制备了VSiO担载的Cu Ni双金属催化剂 ,用IR、TPD、TPSR和微反技术研究了CO2 和CH3OH在催化剂表面上的化学吸附与反应性能.结果表明,在Cu Ni/VSiO催化剂上存在着金属位Cu Ni合金、Lewis酸位Vn 和Lewis碱位V=O三类活性中心 ;CO2 在金属位和Lewis酸位协同作用下可生成CO2卧式吸附态M -(CO) -O→Vn ,此吸附态在138℃左右可解离成M -CO和V=O ;CH3OH在Lewis酸位和Lewis碱位协同作用下可形成解离吸附态V -OCH3和V -OH ;CO2 和CH3OH在Cu Ni/VSiO催化剂表面上的反应产物主要为碳酸二甲酯(DMC)、CH2O、CO和H2O ,其生成DMC的选择性在85%以上.  相似文献   

13.
氧负离子与乙烯自由基反应的理论研究   总被引:1,自引:0,他引:1  
王新磊  于锋  谢丹  刘世林  周晓国 《化学学报》2008,66(22):2499-2506
在G3MP2B3理论水平下研究了氧负离子与乙烯自由基的反应机理. 反应入口势能面的刚性扫描显示: 对于不同的初始反应取向, 体系存在3种不同的反应机理, 分别对应直接脱水、插入反应和直接键合成中间体通道. 其中, 通过插入反应形成的富能中间体[CH2=C—OH]-及键合中间体[CH2=CHO]-都可以进一步经异构化和解离生成其它各种可能产物, 如C2H-+H2O, OH-+CH2C和 +CO产物通道. 基于计算得到的反应势垒的相对高度, 直接脱水反应显然是该反应体系最主要的产物通道, 同时我们还结合Mulliken电荷布居分析研究了其中涉及的电子交换过程. 由此, 计算结果证实了以往OH-与C2H2反应的实验研究结果. 此外, 还对比了该反应体系、氧原子与乙烯自由基、氧负离子与乙烯分子三个反应的不同机理.  相似文献   

14.
[8+12]-metallamacrocycle-based 3D frameworks {[Cu(4)(pbt)(2)(SO(4))(2)(DMF)(2)(CH(3)OH)]·7H(2)O·DMF}(n) (1) and [12]-macrocycle 3D {[Cu(2)(pbt)(SO(4))(DMSO)(CH(3)OH)(2)]·5H(2)O·CH(3)OH}(n) (2) have been obtained. Both complexes display antiferromagnetic couplings and high catalytic activity in the oxidative coupling reaction of 1-ethynylbenzene and oxazolidin-2-one.  相似文献   

15.
对透氧膜反应器内焦炉煤气(COG)重整反应模型进行分析.通过H2+N2、CH4+N2、CO+N2和H2+CH4+N2混合气在透氧膜反应器内重整反应,以及有无催化剂下重整反应和催化剂床层厚度重整反应实验,推测焦炉煤气重整反应模型:首先焦炉煤气中H2在催化剂活性金属镍颗粒上吸附解离,解离后的氢向高活性位迁移"(三相界面")并与膜表面侧晶格氧(或O2-)反应生成H2O.同时CH4也可能在活性镍颗粒上裂解生成CH3*和H*,反应生成的H2O与膜表面催化剂上裂解的碳反应生成H2和CO.未反应完的H2O在催化剂床层内与剩余CH4反应生成H2和CO.  相似文献   

16.
Xia WS  Zhu RS  Lin MC  Mebel AM 《Faraday discussions》2001,(119):191-205; discussion 255-74
The potential energy surface (PES) of the CH3OH system has been characterized by ab initio molecular orbital theory calculations at the G2M level of theory. The mechanisms for the decomposition of CH3OH and the related bimolecular reactions, CH3 + OH and 1CH2 + H2O, have been elucidated. The rate constants for these processes have been calculated using variational RRKM theory and compared with available experimental data. The total decomposition rate constants of CH3OH at the high- and low-pressure limits can be represented by k infinity = 1.56 x 10(16) exp(-44,310/T) s-1 and kAr0 = 1.60 x 10(36) T-12.2 exp(-48,140/T) cm3 molecule-1 s-1, respectively, covering the temperature range 1000-3000 K, in reasonable agreement with the experimental values. Our results indicate that the product branching ratios are strongly pressure dependent, with the production of CH3 + OH and 1CH2 + H2O dominant under high (P > 10(3) Torr) and low (P < 1 atm) pressures, respectively. For the bimolecular reaction of CH3 and OH, the total rate constant and the yields of 1CH2 + H2O and H2 + HCOH at lower pressures (P < 5 Torr) could be reasonably accounted for by the theory. For the reaction of 1CH2 with H2O, both the yield of CH3 + OH and the total rate constant could also be satisfactorily predicted theoretically. The production of 3CH2 + H2O by the singlet to triplet surface crossing, predicted to occur at 4.3 kcal mol-1 above the H2C...OH2 van der Waals complex (which lies 82.7 kcal mol-1 above CH3OH), was neglected in our calculations.  相似文献   

17.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

18.
CO2和CH3OH直接合成碳酸二甲酯Cu-Ni/V2O5-SiO2催化剂   总被引:11,自引:0,他引:11  
采用表面反应改性法制备了V2O5-SiO2(VSiO)表面复合物,用等体积浸渍法制备了VSiO担载的Cu-Ni双金属催化剂,用IR,TPD,TPSR和微反技术研究了CO2和CH3OH在催化剂表面上的化学吸附与反应性能。结果表明,在Cu-Ni/VSiO催化剂上存在着金属位Cu-Ni合金,Lewis酸位V^n+和Lewis碱位V=O三类活性中心;CO2在金属位和Lewis酸位协同作用下可生成CO2卧式  相似文献   

19.
We present ab initio calculations of the reaction of ground-state atomic oxygen [O((3)P)] with a propargyl (C(3)H(3)) radical based on the application of the density-functional method and the complete basis-set model. It has been predicted that the barrierless addition of O((3)P) to C(3)H(3) on the lowest doublet potential-energy surface produces several energy-rich intermediates, which undergo subsequent isomerization and decomposition steps to generate various exothermic reaction products: C(2)H(3)+CO, C(3)H(2)O+H, C(3)H(2)+OH, C(2)H(2)+CHO, C(2)H(2)O+CH, C(2)HO+CH(2), and CH(2)O+C(2)H. The respective reaction pathways are examined extensively with the aid of statistical Rice-Ramsperger-Kassel-Marcus calculations, suggesting that the primary reaction channel is the formation of propynal (CHCCHO)+H. For the minor C(3)H(2)+OH channel, which has been reported in recent gas-phase crossed-beam experiments [H. Lee et al., J. Chem. Phys. 119, 9337 (2003); 120, 2215 (2004)], a comparison on the basis of prior statistical calculations is made with the nascent rotational state distributions of the OH products to elucidate the mechanistic and dynamic characteristics at the molecular level.  相似文献   

20.
On the basis that thiacalix[4]arene (H(4)T4A) complex (PPh(4) )(2) [H(2)T4A(VO(2))](2) (Ia) was found to be an adequate functional model for surface species occurring on vanadium oxide based catalysts and itself catalyses the oxidative dehydrogenation (ODH) of alcohols, an analogue containing 2,2'-thiobis(2,4-di-tert-butylphenolate), (S)L(2-), as ligand, namely, (PPh(4))(2)[(S)LVO(2)](2) (II) was investigated in the same context. Despite the apparent similarity of Ia and II, studies on II revealed several novel insights, which are also valuable in connection with surfaces of vanadia catalysts: 1) For Ia and II similar turnover numbers (TONs) were found for the ODH of activated alcohols, which indicates that the additional OH units inherent to Ia do not contribute particularly to the activity of this complex, for instance, through prebinding of the alcohol. 2) On dissolution II enters into an equilibrium with a monomeric form, which is the predominant species in solution; nevertheless, ODH proceeds exclusively at the dimeric form, and this stresses the need for cooperation of two vanadium centres. 3) By omitting O(2) from the system during the oxidation of 9-fluorenol, the reduced form of the catalyst could be isolated and fully characterised (including single-crystal X-ray analysis). The corresponding intermediate had been elusive in case of thiacalixarene system Ia. 4) Reoxidation was found to proceed via a peroxide intermediate that also oxidises one alcohol equivalent. As the peroxide can also perform mono- and dioxygenation of the thioether group in II, after a number of turnovers the active catalyst contains a sulfone group. The reduced form of this ultimate catalyst was also isolated and structurally characterised. Possible implications of 1)-4) for the function of heterogeneous vanadia catalysts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号