共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduction of some classes of global optimization programs to bilinear programs may be done in various ways, and the choice of method clearly influences the ease of solution of the resulting problem. In this note we show how linear equality constraints may be used together with graph theoretic tools to reduce a bilinear program, i.e., eliminate variables from quadratic terms to minimize the number of complicating variables. The method is illustrated on an example. Computer results are reported on known test problems. 相似文献
2.
This paper considers a class of quadratic programs where the constraints ae linear and the objective is a product of two linear functions. Assuming the two linear factors to be non-negative, maximization and minimization cases are considered. Each case is analyzed with the help of a bicriteria linear program obtained by replacing the quadratic objective with the two linear functions. Global minimum (maximum) is attained at an efficient extreme point (efficient point) of the feasible set in the solution space and corresponds to an efficient extreme point (efficient point) of the feasible set in the bicriteria space. Utilizing this fact and certain other properties, two finite algorithms, including validations are given for solving the respective problems. Each of these, essentially, consists of solving a sequence of linear programs. Finally, a method is provided for relaxing the non-negativity assumption on the two linear factors of the objective function. 相似文献
3.
In this paper, we consider the problem of minimizing an indefinite quadratic function subject to a single indefinite quadratic constraint. A key difficulty with this problem is its nonconvexity. Using Lagrange duality, we show that under a mild assumption, this problem can be solved by solving a linearly constrained convex univariate minimization problem. Finally, the superior efficiency of the new approach compared to the known semidefinite relaxation and a known approach from the literature is demonstrated by solving several randomly generated test problems. 相似文献
4.
Faiz A. Al-Khayyal Christian Larsen Timothy Van Voorhis 《Journal of Global Optimization》1995,6(3):215-230
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489. 相似文献
5.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. While it is obvious that, for a nonempty constraint set, there exists a global minimum cost, a method to determine if a given local solution yields the global minimum cost has not been established. We develop a necessary and sufficient condition that will guarantee that solutions of the optimization problem yield the global minimum cost. This constrained optimization problem occurs naturally in the computation of the phase margin for multivariable control systems. Our results guarantee that numerical routines can be developed that will converge to the global solution for the phase margin. 相似文献
6.
The aim of this paper is to discuss different branch and bound methods for solving indefinite quadratic programs. In these methods the quadratic objective function is decomposed in a d.c. form and the relaxations are obtained by linearizing the concave part of the decomposition. In this light, various decomposition schemes have been considered and studied. The various branch and bound solution methods have been implemented and compared by means of a deep computational test. 相似文献
7.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation. 相似文献
8.
We present a linearization strategy for mixed 0-1 quadratic programs that produces small formulations with tight relaxations. It combines constructs from a classical method of Glover and a more recent reformulation-linearization technique (RLT). By using binary identities to rewrite the objective, a variant of the first method results in a concise formulation with the level-1 RLT strength. This variant is achieved as a modified surrogate dual of a Lagrangian subproblem to the RLT. Special structures can be exploited to obtain reductions in problem size, without forfeiting strength. Preliminary computational experience demonstrates the potential of the new representations. 相似文献
9.
In this paper, we constructively derive an explicit characterization of the convex envelope of a bilinear function over a special type of polytope in 2. Our motivation stems from the use of such functions for deriving strengthened lower bounds within the context of a branch-and-bound algorithm for solving bilinear programming problems. For the case of polytopes with no edges having finite positive slopes, that is polytopes with downward sloping edges (which we call D-polytopes), we obtain a direct, explicit characterization of the convex envelope. This case subsumes the analysis of Al-Khayyal and Falk (1983) for constructing the convex envelope of a bilinear function over a rectangle in 2. For non-D-polytopes, the analysis is more complex. We propose three strategies for this case based on (i) encasing the region in a D-polytope, (ii) employing a discretization technique, and (iii) providing an explicit characterization over a triangle along with a triangular decomposition approach. The analysis is illustrated using numerical examples. 相似文献
10.
This paper provides a canonical dual approach for minimizing a general quadratic function over a set of linear constraints. We first perturb the feasible domain by a quadratic constraint, and then solve a “restricted” canonical dual program of the perturbed problem at each iteration to generate a sequence of feasible solutions of the original problem. The generated sequence is proven to be convergent to a Karush-Kuhn-Tucker point with a strictly decreasing objective value. Some numerical results are provided to illustrate the proposed approach. 相似文献
11.
The mixed integer quadratic programming (MIQP) reformulation by Zheng, Sun, Li, and Cui (2012) for probabilistically constrained quadratic programs (PCQP) recently published in EJOR significantly dominates the standard MIQP formulation ( and ) which has been widely adopted in the literature. Stimulated by the dimensionality problem which Zheng et al. (2012) acknowledge themselves for their reformulations, we study further the characteristics of PCQP and develop new MIQP reformulations for PCQP with fewer variables and constraints. The results from numerical tests demonstrate that our reformulations clearly outperform the state-of-the-art MIQP in Zheng et al. (2012). 相似文献
12.
In this paper a deterministic method is proposed for the global optimization of mathematical programs that involve the sum of linear fractional and/or bilinear terms. Linear and nonlinear convex estimator functions are developed for the linear fractional and bilinear terms. Conditions under which these functions are nonredundant are established. It is shown that additional estimators can be obtained through projections of the feasible region that can also be incorporated in a convex nonlinear underestimator problem for predicting lower bounds for the global optimum. The proposed algorithm consists of a spatial branch and bound search for which several branching rules are discussed. Illustrative examples and computational results are presented to demonstrate the efficiency of the proposed algorithm. 相似文献
13.
The quadratic assignment problem is an NP-hard discrete optimization program that has been extensively studied for over 50 years. It has a variety of applications in many fields, but has proven itself extremely challenging to solve. As a result, an area of research has been to identify special cases which admit efficient solution strategies. This paper examines four such cases, and shows how each can be explained in terms of the dual region to the continuous relaxation of a classical linear reformulation of the problem known as the level-1 RLT representation. The explanations allow for simplifications and/or generalizations of the conditions defining the special cases. 相似文献
14.
Convex integer quadratic programming involves minimization of a convex quadratic objective function with affine constraints and is a well-known NP-hard problem with a wide range of applications. We proposed a new variable reduction technique for convex integer quadratic programs (IQP). Based on the optimal values to the continuous relaxation of IQP and a feasible solution to IQP, the proposed technique can be applied to fix some decision variables of an IQP simultaneously at zero without sacrificing optimality. Using this technique, computational effort needed to solve IQP can be greatly reduced. Since a general convex bounded IQP (BIQP) can be transformed to a convex IQP, the proposed technique is also applicable for the convex BIQP. We report a computational study to demonstrate the efficacy of the proposed technique in solving quadratic knapsack problems. 相似文献
15.
Stéphane Alarie Charles Audet Brigitte Jaumard Gilles Savard 《Mathematical Programming》2001,90(2):373-398
We pursue the study of concavity cuts for the disjoint bilinear programming problem. This optimization problem has two equivalent
symmetric linear maxmin reformulations, leading to two sets of concavity cuts. We first examine the depth of these cuts by
considering the assumptions on the boundedness of the feasible regions of both maxmin and bilinear formulations. We next propose
a branch and bound algorithm which make use of concavity cuts. We also present a procedure that eliminates degenerate solutions.
Extensive computational experiences are reported. Sparse problems with up to 500 variables in each disjoint sets and 100 constraints,
and dense problems with up to 60 variables again in each sets and 60 constraints are solved in reasonable computing times.
Received: October 1999 / Accepted: January 2001?Published online March 22, 2001 相似文献
16.
We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto the positive semidefinite cone is required at each iteration. We prove global convergence and provide numerical evidence to show the effectiveness of this method. 相似文献
17.
In the area of broad-band antenna array signal processing, the global minimum of a quadratic equality constrained quadratic cost minimization problem is often required. The problem posed is usually characterized by a large optimization space (around 50–90 tuples), a large number of linear equality constraints, and a few quadratic equality constraints each having very low rank quadratic constraint matrices. Two main difficulties arise in this class of problem. Firstly, the feasibility region is nonconvex and multiple local minima abound. This makes conventional numerical search techniques unattractive as they are unable to locate the global optimum consistently (unless a finite search area is specified). Secondly, the large optimization space makes the use of decision-method algorithms for the theory of the reals unattractive. This is because these algorithms involve the solution of the roots of univariate polynomials of order to the square of the optimization space. In this paper we present a new algorithm which exploits the structure of the constraints to reduce the optimization space to a more manageable size. The new algorithm relies on linear-algebra concepts, basic optimization theory, and a multivariate polynomial root-solving tool often used by decision-method algorithms.This research was supported by the Australian Research Council and the Corporative Research Centre for Broadband Telecommunications and Networking. 相似文献
18.
When all the involved data in indefinite quadratic programs change simultaneously,we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Lipschtiz continuity of the KKT solution set. Finally, the similar conclusion for the corresponding optimal value function is obtained. 相似文献
19.
We consider the problem min {f(x): x G, T(x) int D}, where f is a lower semicontinuous function, G a compact, nonempty set in n, D a closed convex set in 2 with nonempty interior and T a continuous mapping from n to 2. The constraint T(x) int D is a reverse convex constraint, so the feasible domain may be disconnected even when f, T are affine and G is a polytope. We show that this problem can be reduced to a quasiconcave minimization problem over a compact convex set in 2 and hence can be solved effectively provided f, T are convex and G is convex or discrete. In particular we discuss a reverse convex constraint of the form c, x · d, x1. We also compare the approach in this paper with the parametric approach. 相似文献
20.
We present computational experiments for solving quadratic (0, 1) problems. Our approach combines a semidefinite relaxation with a cutting plane technique, and is applied in a Branch and Bound setting. Our experiments indicate that this type of approach is very robust, and allows to solve many moderately sized problems, having say, less than 100 binary variables, in a routine manner. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Large parts of this paper were prepared while the author was working at the Christian Doppler Laboratory for Discrete Optimization at Technische Universität Graz. 相似文献