首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Reduction of some classes of global optimization programs to bilinear programs may be done in various ways, and the choice of method clearly influences the ease of solution of the resulting problem. In this note we show how linear equality constraints may be used together with graph theoretic tools to reduce a bilinear program, i.e., eliminate variables from quadratic terms to minimize the number of complicating variables. The method is illustrated on an example. Computer results are reported on known test problems.  相似文献   

2.
This paper considers a class of quadratic programs where the constraints ae linear and the objective is a product of two linear functions. Assuming the two linear factors to be non-negative, maximization and minimization cases are considered. Each case is analyzed with the help of a bicriteria linear program obtained by replacing the quadratic objective with the two linear functions. Global minimum (maximum) is attained at an efficient extreme point (efficient point) of the feasible set in the solution space and corresponds to an efficient extreme point (efficient point) of the feasible set in the bicriteria space. Utilizing this fact and certain other properties, two finite algorithms, including validations are given for solving the respective problems. Each of these, essentially, consists of solving a sequence of linear programs. Finally, a method is provided for relaxing the non-negativity assumption on the two linear factors of the objective function.  相似文献   

3.
This paper provides a new methodology to solve bilinear, non-convex mathematical programming problems by a suitable transformation of variables. Schur's decomposition and special ordered sets (SOS) type 2 constraints are used resulting in a mixed integer linear or quadratic program in the two applications shown. While Beale, Tomlin and others developed the use of SOS type 2 variables to handle non-convexities, our approach is novel in two aspects. First, the use of Schur's decomposition as an integral part of the approximation step is new and leads to a numerically viable method to separate the variables. Second, the combination of our approach for handling bilinear side constraints in a complementarity or equilibrium problem setting is also new and opens the way to many interesting and realistic modifications to such models. We contrast our approach with other methods for solving bilinear problems also known as indefinite quadratic programs. From a practical point of view our methodology is helpful since no specialized procedures need to be created so that existing solvers can be used. The approach is illustrated with two engineering examples and the mathematical analysis appears in the Appendices.  相似文献   

4.
We consider linear programs in which the objective function (cost) coefficients are independent non-negative random variables, and give upper bounds for the random minimum cost. One application shows that for quadratic assignment problems with such costs certain branch-and-bound algorithms usually take more than exponential time.  相似文献   

5.
A dual algorithm is developed for solving a general class of nonlinear programs that properly contains all convex quadratic programs with quadratic constraints and lp-constrained lp-approximation problems. The general dual program to be solved has essentially linear constraints but the objective function is nondifferentiable when certain variables equal zero. Modifications to the reduced gradient method for linearly constrained problems are presented that overcome the numerical difficulties associated with the nondifferentiable objective function. These modifications permit ‘blocks’ of variables to move to and away from zero on certain iterations even though the objective function is nondifferentiable at points having a block of variables equal to zero.  相似文献   

6.
Numerical test results are presented for solving smooth nonlinear programming problems with a large number of constraints, but a moderate number of variables. The active set method proceeds from a given bound for the maximum number of expected active constraints at an optimal solution, which must be less than the total number of constraints. A quadratic programming subproblem is generated with a reduced number of linear constraints from the so-called working set, which is internally changed from one iterate to the next. Only for active constraints, i.e., a certain subset of the working set, new gradient values must be computed. The line search is adapted to avoid too many active constraints which do not fit into the working set. The active set strategy is an extension of an algorithm described earlier by the author together with a rigorous convergence proof. Numerical results for some simple academic test problems show that nonlinear programs with up to 200,000,000 nonlinear constraints are efficiently solved on a standard PC.  相似文献   

7.
The paper shows that the global resolution of a general convex quadratic program with complementarity constraints (QPCC), possibly infeasible or unbounded, can be accomplished in finite time. The method constructs a minmax mixed integer formulation by introducing finitely many binary variables, one for each complementarity constraint. Based on the primal-dual relationship of a pair of convex quadratic programs and on a logical Benders scheme, an extreme ray/point generation procedure is developed, which relies on valid satisfiability constraints for the integer program. To improve this scheme, we propose a two-stage approach wherein the first stage solves the mixed integer quadratic program with pre-set upper bounds on the complementarity variables, and the second stage solves the program outside this bounded region by the Benders scheme. We report computational results with our method. We also investigate the addition of a penalty term y T Dw to the objective function, where y and w are the complementary variables and D is a nonnegative diagonal matrix. The matrix D can be chosen effectively by solving a semidefinite program, ensuring that the objective function remains convex. The addition of the penalty term can often reduce the overall runtime by at least 50 %. We report preliminary computational testing on a QP relaxation method which can be used to obtain better lower bounds from infeasible points; this method could be incorporated into a branching scheme. By combining the penalty method and the QP relaxation method, more than 90 % of the gap can be closed for some QPCC problems.  相似文献   

8.
The determination of the maximum or minimum of the stop-loss premium E(Xt), (t = retention limit) under various constraints on the distribution of the risk X, leads to linear programs with an infinite number of linear inequality constraints. Retaining a properly chosen increasing finite number of the constraints such a program can be approximated as a sequence of usual finite-dimensional linear programs.  相似文献   

9.
§ 1 IntroductionThequadraticallyconstrainedandentropydensityconstrainedquadraticprogramthatisgoingtobestudiedinthispaperischaracterizedasthefollowingform :Program (Q)(Q)  min Q0 (z)s .t . Pj(z)≤ 0 , j =1 ,2 ,...,l,Qi(z) ≤ 0 , i =1 ,2 ,...,r ,z=(z1,...,zn) T ≥ 0 ,wherePj(z) = nk =1zklog zke…  相似文献   

10.
In this paper we analyze conjugate gradient-type algorithms for solving convex quadratic programs subject only to box constraints (i.e., lower and upper bounds on the variables). Programs of this type, which we denote by BQP, play an important role in many optimization models and algorithms. We propose a new class of finite algorithms based on a nonfinite heuristic for solving a large, sparse BQP. The numerical results suggest that these algorithms are competitive with Dembo and Tulowitzski's (1983) CRGP algorithm in general, and perform better than CRGP for problems that have a low percentage of free variables at optimality, and for problems with only nonnegativity constraints.  相似文献   

11.
This paper addresses itself to the maximization of a convex quadratic function subject to linear constraints. We first prove the equivalence of this problem to the associated bilinear program. Next we apply the theory of bilinear programming developed in [9] to compute a local maximum and to generate a cutting plane which eliminates a region containing that local maximum. Then we develop an iterative procedure to improve a given cut by exploiting the symmetric structure of the bilinear program. This procedure either generates a point which is strictly better than the best local maximum found, or generates a cut which is deeper (usually much deeper) than Tui's cut. Finally the results of numerical experiments on small problems are reported.  相似文献   

12.
We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation of the original problem, which can then be solved efficiently. Numerical experiments suggest that the proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average solution time.  相似文献   

13.
To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.  相似文献   

14.
Mixed-integer quadratic programming   总被引:5,自引:0,他引:5  
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts are quadratic in the integer variables. A new equivalent formulation that renders the program tractable is developed, under which the dual objective function is linear in the integer variables and the dual constraint set is independent of these variables. Benders' cuts that are derived from the new formulation are linear in the integer variables, and the original problem is decomposed into a series of integer linear master problems and standard quadratic subproblems. The new formulation does not introduce new primary variables or new constraints into the computational steps of the decomposition algorithm.The author wishes to thank two anonymous referees for their helpful comments and suggestions for revising the paper.  相似文献   

15.
The paper is a manifestation of the fundamental importance of the linear program with linear complementarity constraints (LPCC) in disjunctive and hierarchical programming as well as in some novel paradigms of mathematical programming. In addition to providing a unified framework for bilevel and inverse linear optimization, nonconvex piecewise linear programming, indefinite quadratic programs, quantile minimization, and 0 minimization, the LPCC provides a gateway to a mathematical program with equilibrium constraints, which itself is an important class of constrained optimization problems that has broad applications. We describe several approaches for the global resolution of the LPCC, including a logical Benders approach that can be applied to problems that may be infeasible or unbounded.  相似文献   

16.
It is known that convex programming problems with separable inequality constraints do not have duality gaps. However, strong duality may fail for these programs because the dual programs may not attain their maximum. In this paper, we establish conditions characterizing strong duality for convex programs with separable constraints. We also obtain a sub-differential formula characterizing strong duality for convex programs with separable constraints whenever the primal problems attain their minimum. Examples are given to illustrate our results.  相似文献   

17.
In this paper, we develop a Lagrangian decomposition based heuristic method for general quadratic binary programs (QBPs) with linear constraints. We extend the idea of Lagrangian decomposition by Chardaire and Sutter (Manag Sci 41(4):704–712, 1995) and Billionnet and Soutif (Eur J Oper Res 157(3):565–575, 2004a, Inf J Comput 16(2):188–197, 2004b) in which the quadratic objective is converted to a bilinear function by introducing auxiliary variables to duplicate the original complicating variables in the problem. Instead of using linear constraints to assure the equity between the two types of decision variables, we introduce generalized quadratic constraints and relax them with Lagrangian multipliers. Instead of computing an upper bound for a maximization problem, we focus on lower bounding with Lagrangian decomposition based heuristic. We take advantage of the decomposability presented in the Lagrangian subproblems to speed up the heuristic and identify one feasible solution at each iteration of the subgradient optimization procedure. With numerical studies on several classes of representative QBPs, we investigate the sensitivity of lower-bounding performance on parameters of the additional quadratic constraints. We also demonstrate the potentially improved quality of preprocessing in comparison with the use of a QBP solver.  相似文献   

18.
By reformulating quadratic programs using necessary optimality conditions, we obtain a linear program with complementarity constraints. For the case where the only constraints are bounds on the variables, we study a relaxation based on a subset of the optimality conditions. By characterizing its convex hull, we obtain a large class of valid inequalities. These inequalities are used in a branch-and-cut scheme, see [13].Mathematics Subject Classification (2000): 90C26, 90C27, 90C20  相似文献   

19.
《Optimization》2012,61(1):37-48
In two recent papers Chabnes, Gbibie, and Kortanek [3], [4] studied a special class of infinite linear programs where only a finite number of variables appear in an infinite number of constraints and where only a finite number of constraints have an infinite number of variables. Termed separably-infinite programs, their duality was used to characterize a class of saddle value problems as a uniextremai principle.

We show how this characterization can be derived and extended within Fenchel and Rockafellar duality, and that the values of the dual separably-infinite programs embrace the values of the Fenchel dual pair within their interval. The development demonstrates that the general finite dimensional Fenchel dual pair is equivalent to a dual pair of separably-infinite programs when certain cones of coefficients are closed.  相似文献   

20.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号