首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

2.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

3.
A series of luminescent branched platinum(II) alkynyl complexes, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]C-C6H4C[triple bond]C}3C6H3] (R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, C6H4SAc, 1-napthyl (Np), 1-pyrenyl (Pyr), 1-anthryl-8-ethynyl (HC[triple bond]CAn)), [1,3-{PyrC[triple chemical bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], and [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], was successfully synthesized by using the precursors [1,3,5-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] or [1,3-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3]. The X-ray crystal structures of [1,3,5-{MeOC6H4C[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An] have been determined. These complexes were found to show long-lived emission in both solution and solid-state phases at room temperature. The emission origin of the branched complexes [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, and C6H4SAc was tentatively assigned to be derived from triplet states of predominantly intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(C[triple bond]CR)) character, while the emission origin of the branched complexes with polyaromatic alkynyl ligands, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=Np, Pyr, or HC[triple bond]CAn, [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An], was tentatively assigned to be derived from the predominantly 3IL states of the respective polyaromatic alkynyl ligands, mixed with some 3MLCT (d(pi)(Pt)-->pi*(C[triple bond]CR)) character. By incorporating different alkynyl ligands into the periphery of these branched complexes, one could readily tune the nature of the lowest energy emissive state and the direction of the excitation energy transfer.  相似文献   

4.
Inverted cucurbit[n]urils (iCB[n]) form as intermediates during the synthesis of cucurbit[n]urils from glycoluril and formaldehyde in HCl (85 degrees C). Product resubmission experiments establish that the diastereomeric iCB[6] and iCB[7] are kinetic products that are less stable thermodynamically than CB[6] or CB[7] (>2.8 kcal mol(-1)). When iCB[6] or iCB[7] is heated under aqueous acidic conditions, a preference for ring contraction is noted in the formation of CB[5] and CB[6], respectively. Interestingly, under anhydrous acidic conditions ring size is preserved with iCB[6] delivering CB[6] cleanly. To establish the intramolecular nature of the iCB[6] to CB[6] conversion under anhydrous, but not aqueous, acidic conditions we performed crossover experiments involving mixtures of iCB[6] and its (13)C=O labeled isotopomer (13)C(12)-iCB[6]. An unusual diastereomeric CB[6] with a M?bius geometry (13) is proposed as a mechanistic intermediate in the conversion of iCB[6] to CB[6] under anhydrous acidic conditions. The improved mechanistic understanding provided by this study suggests improved routes to CB[n]-type compounds.  相似文献   

5.
Two structural series, including seven isomorphous heterodinuclear complexes, [Ln(DMSO)4(H2O)3(mu-CN)M(CN)5].H2O ([La-Fe] (1), [Pr-Fe] (2), [Pr-Co] (3), [Nd-Fe] (4), [Nd-Co] (5), [Sm-Fe] (6) and [Sm-Co] (7)), and seven isostructural 2-D stair-like cyano-bridged bimetallic assemblies, [Ln(DMSO)2(H2O)(mu-CN)4M(CN)2]n ([La-Fe]n (8), [Pr-Fe]n (9), [Pr-Co]n (10), [Nd-Fe]n (11), [Nd-Co]n (12), [Sm-Fe]n (13) and [Sm-Co]n (14)) (DMSO = dimethylsulfoxide), have been rationally prepared by a facile approach, a ball-milling method, and characterized by X-ray diffraction and magnetic measurements. The isomorphous structures, in conjunction with the diamagnetism of the Co(3+) and La(3+) ions, allow an approximation to the nature of coupling between the iron(III) and lanthanide(III) ions in the Ln(3+)-Fe(3+) complexes. The Ln(3+)-Fe(3+) interaction is ferromagnetic for the dinuclear [Pr-Fe] (2), [Nd-Fe] (4), and [Sm-Fe] (6) systems and for the 2-D [Pr-Fe]n (9), [Nd-Fe]n (11), and [Sm-Fe]n (13) assemblies.  相似文献   

6.
The reaction of 4-methoxy-5-amino-6-mercaptopyrimidine with 2-oxo-1-chlorocyclopentyl(hexyl)glyoxalate esters gave derivatives of the previously unknown tetracyclic systems 1,2-dioxocyclopenta (hexa)[g]oxazolidino[3,2-f]pyrimido[4,5-b][1,4]thiazines, which are transformed by ammonium acetate into derivatives of 1,2-dioxocyclopenta(hexa) [g]imidazolidino[3,2-f]pyrimido[4,5-b]-[1,4] thiazines. Derivatives of the new tricyclic 1-oxazino [5,4-g]pyrimido[4,5-b][1,4]thiazine system were obrtained by reaction of 6-carbethoxy-7-acetylpyrimido [4,5-b] [1,4] thiazines with hydroxylamine.  相似文献   

7.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to 13 one-dimensional complexes: trans-[M(CN)4(mu-CN)2Ln(H2O)4(bpy)]n.4nH2O.1.5nbpy (Ln = Eu3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Lu3+; M = Fe3+, Co3+). The structures for [EuFe]n (1), [TbFe]n (2), [DyFe]n (3), [HoFe]n (4), [ErFe]n (5), [TmFe]n (6), [LuFe]n (7), [EuCo]n (8), [TbCo]n (9), [DyCo]n (10), [HoCo]n (11), [ErCo]n (12), and [TmCo]n (13) have been solved: they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular architecture created by the interplay of coordinative, hydrogen bonding, and pi-pi interactions. A stereochemical study of the eight-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. The Ln3+-Fe3+ interaction is antiferromagnetic in [DyFe]n and [TbFe]n. For [EuFe]n, [HoFe]n, [ErFe]n, and [TmFe]n, there is no sign of any significant interaction. The magnetic behavior of [DyFe]n suggests the onset of weak long-range ferromagnetic ordering at 2.5 K.  相似文献   

8.
采用Dmol3程序中基于密度泛函理论(DFT)的广义梯度方法(GGA)和BLYP方法以及DND基组, 研究了丝光沸石H-[M']MOR、Cu-[M']MOR和Ag-[M']MOR(M'=B, Al, Ga, Fe)结构及其对NH3分子的吸附, 获得了吸附平衡构型和吸附能. NH3分子在H-[M']MOR中的吸附主要是通过NH3分子中氮原子上的孤对电子与质子酸位作用, NH3分子在H-[Al]MOR、H-[Ga]MOR和H-[Fe]MOR上发生化学吸附, 而在H-[B]MOR上发生物理吸附, 这与文献结果相符. NH3分子与Cu-[M']MOR 和Ag-[M']MOR分子筛之间主要通过氮上的孤对电子和平衡离子(Cu+和Ag+)的s空轨道间配位作用而发生化学吸附. 吸附能数据表明, 在H-[M']MOR、Cu-[M']MOR 和Ag-[M']MOR中, A1原子进入骨架导致H-[A1]MOR、Cu-[A1]MOR和Ag-[A1]MOR的酸强度最强; 对于同一种原子取代的丝光沸石, 其酸强度次序为: Cu-[M']MOR > Ag-[M']MOR > H-[M']MOR. 此外, 还对吸附前后的沸石中平衡离子(H+、Cu+和Ag+)及NH3分子的Mulliken电荷集居数作了研究和分析.  相似文献   

9.
Xu J  Liu H  Li G  He Y  Ding R  Wang X  Feng M  Zhang S  Chen Y  Li S  Zhao M  Li Y  Qi C  Dang Y 《Molecules (Basel, Switzerland)》2012,17(4):3774-3793
We previously reported 18F-labeled pyrazolo[1,5-a]pyrimidine derivatives: 7-(2-[18F]fluoroethylamino)-5-methylpyrazolo[1,5-a]pyrimidine-3-carbonitrile ([18F]1) and N-(2-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)ethyl)-2-[18F]fluoro-4-nitro- benzamide ([18F]2). Preliminary biodistribution experiments of both compounds showed s slow clearance rate from excretory tissues which warranted further investigation for tumor imaging with PET. Here we modified [18F]1 and [18F]2 by introducing polar groups such as ester, hydroxyl and carboxyl and developed three additional 18F-18 labeled pyrazolo[1,5-a] pyrimidine derivatives: (3-Cyano-7-(2-[18F]fluoroethylamino)pyrazolo[1,5-a]-pyrimidin-5- yl)methyl acetate ([18F]3), 7-(2-[18F]fluoroethylamino)-5-(hydroxymethyl)pyrazolo[1,5-a]- pyrimidine-3-carbonitrile ([18F]4) and (S)-6-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)-2-(2-[18F]fluoro-4-nitrobenzamido)hexanoic acid ([18F]5). The radiolabeled probes were synthesized by nucleophilic substitution of the corresponding tosylate and nitro precursors with 18F-fluoride. In Vitro studies showed higher uptake of [18F]3 and [18F]4 than that of [18F]5 by S180 tumor cells. In Vivo biodistribution studies in mice bearing S180 tumors showed that the uptake of both [18F]3 and [18F]4 in tumors displayed an increasing trend while the uptake of [18F]5 in tumor decreased through the course of the 120 min study. This significant difference in tumor uptake was also found between [18F]1 and [18F]2. Thus, we compared the biological behavior of the five tracers and reported the tumor uptake kinetic differences between 2-[18F]fluoroethylamino- and 2-[18F]fluoro-4-nitro- benzamidopyrazolo[1,5-a] pyrimidine derivatives.  相似文献   

10.
A series of aluminum complexes supported by o-phenylene-derived amido phosphine ligands, N-(2-diphenylphosphinophenyl)-2,6-dimethylanilide ([Me-NP]-) and N-(2-diphenylphosphinophenyl)-2,6-diisopropylanilide ([iPr-NP]-), have been prepared. The reactions of trialkylaluminum with H[Me-NP] and H[iPr-NP], respectively, in refluxing toluene produced the corresponding dialkyl complexes [Me-NP]AlR(2) and [iPr-NP]AlR(2) (R = Me, Et). Deprotonation of H[Me-NP] with n-BuLi in THF at -35 degrees C followed by addition of AlCl(3) in toluene at -35 degrees C afforded [Me-NP]AlCl(2), which was subsequently reacted with 2 equiv of trimethylsilylmethyllithium in toluene to give [Me-NP]Al(CH(2)SiMe(3))(2). The aluminum complexes were all characterized by (1)H, (13)C, (31)P, and (27)Al NMR spectroscopy. The solid-state structures of monomeric, four-coordinate [Me-NP]AlEt(2) and [iPr-NP]AlMe(2) and five-coordinate [Me-NP]AlCl(2)(THF) were determined by X-ray crystallography. The (1)H NMR studies of [Me-NP]AlEt(2), [Me-NP]Al(CH(2)SiMe(3))(2), and [iPr-NP]AlEt(2) indicate diastereotopic alpha-hydrogen atoms in these molecules. Heteronuclear COSY and NOE experiments suggest that the phosphorus donor in [Me-NP]Al(CH(2)SiMe(3))(2) and [iPr-NP]AlEt(2) is coupled to only one of the diastereotopic alpha-hydrogen atoms that is virtually antiperiplanar with respect to the phosphorus atom.  相似文献   

11.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

12.
The successive addition of KCN and Ph3CCl to B(C6F4-C6F5-2)3 (PBB) affords triphenylmethyl salts of the [NC-PBB]- anion. By contrast, the analogous reaction with sodium dicyanamide followed by treatment with Ph(3)CCl leads to the zwitterionic aminoborane H2NB(C12F9)2C12F8, via nucleophilic attack on an o-F atom, together with CPh3[F-PBB]. Whereas treatment of [NC-PBB]- with either PBB or B(C6F5)3 fails to give isolable cyano-bridged diborates, the reaction of Me3SiNC-B(C6F5)3 with PBB in the presence of Ph3CCl affords [Ph3C][PBB-NC-B(C6F5)3]. Due to steric hindrance this anion is prone to borane dissociation. The longer linking group N(CN)2- gives the very voluminous anions [N[CNB(C6F5)3]2]- and [N(CN-PBB)2]-. A comparison of propylene polymerisations with rac-Me2Si(Ind)2ZrMe2 activated with the various boranes or trityl borates gives an anion-dependent activity sequence, in the order [NC-PBB]- < [MeB(C6F5)3]- < [MePBB]- approximately [PBB-NCB(C6F5)3]- approximately [N[CNB(C6F5)3]2]- < [F-PBB]-< [B(C6F5)4]- < [N(CN-PBB)2]-. The anion [N(CN-PBB)2]- gives a catalyst productivity about 2500 times higher than that of [NC-PBB]- and exceeds that of [B(C6F5)4]- based catalysts. The van der Waals volumes and surface areas of the anions have been calculated and provide a rationale for the observed reactivity trends in polymerisation reactions.  相似文献   

13.
Binding behaviors of cucurbit[6]uril (CB[6]) and cucurbit[7]uril (CB[7]) with a series of bis-pyridinium compounds N, N’-hexamethylenebis(1-alkyl-4-carbamoyl pyridinium bromide) (HBPB-n) (alkyl chain length, n = 6, 8 and 10) guests were investigated using 1H-NMR, ESI–MS and single crystal X-ray diffraction methods. The results show that CB[6] and CB[7] can form [2]pseudorotaxanes with HBPB-n easily. When increasing the length of tail alkyl chain, the binding site of CB[6] at guest molecules changed from the tail to the middle part, while CB[7] remained located over the tail chain. As CB[6] and CB[7] were added in HBPB-8 aqueous solution, a [3]pseudorotaxane was formed by the inclusion of the internal middle site in CB[6] and the tail chain in CB[7].  相似文献   

14.
A series of divalent, monovalent, and zerovalent nickel complexes supported by the electron-releasing, monoanionic tris(phosphino)borate ligands [PhBP3] and [PhBPiPr3] ([PhBP3] = [PhB(CH2PPh2)3]-, [PhBPiPr3] = [PhB(CH2PiPr2)3]-) have been synthesized to explore fundamental aspects of their coordination chemistry. The pseudotetrahedral, divalent halide complexes [PhBP3]NiCl (1), [PhBP3]NiI (2), and [PhBPiPr3]NiCl (3) were prepared by the metalation of [PhBP3]Tl or [PhBPiPr3]Tl with (Ph3P)2NiCl2, NiI2, and (DME)NiCl2 (DME = 1,2-dimethoxyethane), respectively. Complex 1 is a versatile precursor to a series of complexes accessible via substitution reactions including [PhBP3]Ni(N3) (4), [PhBP3]Ni(OSiPh3) (5), [PhBP3]Ni(O-p-tBu-Ph) (6), and [PhBP3]Ni(S-p-tBu-Ph) (7). Complexes 2-5 and 7 have been characterized by X-ray diffraction (XRD) and are pseudotetrahedral monomers in the solid state. Complex 1 reacts readily with oxygen to form the four-electron-oxidation product, [[PhB(CH2POPh2)2(CH2PPh2)]NiCl] (8A or 8B), which features a solid-state structure that is dependent on its method of crystallization. Chemical reduction of 1 using Na/Hg or other potential 1-electron reductants generates a product that arises from partial ligand degradation, [PhBP3]Ni(eta2-CH2PPh2) (9). The more sterically hindered chloride 3 reacts with Li(dbabh) (Hdbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) to provide the three-coordinate complex [kappa2-PhBPiPr3]Ni(dbabh) (11), also characterized by XRD. Chemical reduction of complex 1 in the presence of L-type donors produces the tetrahedral Ni(I) complexes [PhBP3]Ni(PPh3) (12) and [PhBP3]Ni(CNtBu) (13). Reduction of 3 following the addition of PMe3 or tert-butyl isocyanide affords the Ni(I) complexes [PhBPiPr3]Ni(PMe3) (14) and [PhBPiPr3]Ni(CNtBu) (15), respectively. The reactivity of these [PhBP3]NiIL and [PhBPiPr3]NiIL complexes with respect to oxidative group transfer reactions from organic azides and diazoalkanes is discussed. The zerovalent nitrosyl complex [PhBP3]Ni(NO) (16) is prepared by the reaction of 1 with excess NO or by treating 12 with stoichiometric NO. The anionic Ni(0) complexes [[kappa2-PhBP3]Ni(CO)2][nBu4N] (17) and [[kappa2-PhBPiPr3]Ni(CO)2][ASN] (18) (ASN = 5-azoniaspiro[4.4]nonane) have been prepared by reacting [PhBP3]Tl or [PhBPiPr3]Tl with (Ph3P)2Ni(CO)2 in the presence of R4NBr. The photolysis of 17 appears to generate a new species consistent with a zerovalent monocarbonyl complex which we tentatively assign as [[PhBP3]Ni(CO)][nBu4N], although complete characterization of this complex has been difficult. Finally, theoretical DFT calculations are presented for the hypothetical low spin complexes [PhBP3]Ni(NtBu), [PhBPiPr3]Ni(NtBu), [PhBPiPr3]Ni(NMe), and [PhBPiPr3]Ni(N) to consider what role electronic structure factors might play with respect to the relative stability of these species.  相似文献   

15.
Heating 3-hydroxy-1,2,3,4-tetrahydrobenzo[h]quinoline with phosphorus oxychloride gave a mixture of isomeric 3-chloro-1,2,3,4-tetrahydrobenzo[h]quinoline and 2-(chloromethyl)-benz[g]indoline, which are converted to a mixture of 3-benzoyloxy-1,2,3,4-tetrahydrobenzo-[h]quinoline and 2-(benzoyloxymethyl)benz[g]indoline on reaction with potassium benzoate. Saponification of 2-(benzoyloxymethyl)benz[g]indoline gave 2-(hydroxymethyl)benz[g]indoline. The reaction of the isomeric chloro derivatives with potassium cyanide gave 2-(benz[g]-indolinyl)acetonitrile.See [1] for communication IX.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 362–366, March, 1972.  相似文献   

16.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

17.
The activation of the P=C bond of phosphaalkenes with electrophiles is investigated as a means to prepare and characterize unusual organophosphorus compounds. Treatment of RP=CHtBu (1a: R=tBu; 1b: R=1-adamantyl) with HOTf (0.5 equiv) affords diphosphiranium salts [RP-CHtBu-PR (CH(2)tBu)]OTf ([2a]OTf and [2b]OTf), each containing a three-membered P(2)C ring. In contrast, the addition of MeOTf (0.5 equiv) to either 1a or 1b affords diphosphetanium salts [RP-CHtBu-P(Me)R-CHtBu]OTf ([3a]OTf and [3b]OTf) containing four-membered P(2)C(2) heterocycles. The phosphenium triflate [tBuP(CH(2)tBu)]OTf ([5a]OTf) and methylenephosphonium triflate [tBu(Me)P=CHtBu]OTf ([7a]OTf) are identified spectroscopically as intermediates in the formation of [2a](+) and [3a](+), respectively. The phosphenium triflate intermediate can be trapped with 2-butyne to afford phosphirenium salt [MeC=CMe-tBuPCH(2)tBu]OTf ([6a]OTf). Treatment of diphosphetanium [3a]OTf with an excess MeOTf affords [Me(2)P-CHtBu-PMetBu-CHtBu](OTf)(2) ([4a](OTf)(2)), a compound containing a diphosphetanium dication. The molecular structures are reported for [2a]OTf, [2b][H(OTf)(2)], [3a]I, [3b]I, [4a](OTf)(2), and [6a]OTf.  相似文献   

18.
A series of 2[prime or minute]-thionucleosides, as potential inhibitors of ribonucleotide reductases, has been synthesized. Treatment of the 3[prime or minute],5[prime or minute]-O-TPDS-2[prime or minute]-O-(trifluoromethanesulfonyl)adenosine with potassium thioacetate gave the arabino epimer of 2[prime or minute]-S-acetyl-2[prime or minute]-thioadenosine which was deacetylated to give 9-(3,5-O-TPDS-2-thio-[small beta]-d-arabinofuranosyl)adenine in high yield. Treatment of the latter with diethyl azodicarboxylate-C(3)H(7)SH-THF gave 2[prime or minute]-propyl disulfide which was desilylated to give 9-(2-deoxy-2-propyldithio-[small beta]-d-arabinofuranosyl)adenine. Subsequent tosylation (O5[prime or minute]) and displacement of the tosylate with pyrophosphate afforded the 5[prime or minute]-O-diphosphate in a stable form as propyl mixed-disulfide, which upon treatment with dithiothreitol releases 9-(2-thio-[small beta]-d-arabinofuranosyl)adenine 5[prime or minute]-diphosphate. The arabino 2[prime or minute]-mercapto group might interact with the crucial thiyl radical at cysteine 439 leading to the inhibition of ribonucleotide reductases via formation of a Cys439-2[prime or minute]-mercapto disulfide bridge. The 2,6-diamino-, 2-amino-6-chloro- and 2-amino-6-methoxypurine ribosides were also converted to the corresponding 2[prime or minute]-deoxy-2[prime or minute]-propyldithio-[small beta]-d-arabinofuranosyl nucleosides, which might serve as convenient precursors to the arabino epimer of 2[prime or minute]-thioguanosine. Analogously, 2[prime or minute]-deoxy-2[prime or minute]-propyldithioadenosine was prepared from 9-([small beta]-d-arabinofuranosyl)adenine. The nucleoside disulfides show modest cytotoxicity in a panel of human tumor cell lines.  相似文献   

19.
Reported here is the synthesis and self-assembly characterization of [n.n]paracyclophanes ( [n.n]pCps , n=2, 3) equipped with anilide hydrogen bonding units. These molecules differ from previous self-assembling [n.n]paracyclophanes ( [n.n]pCps ) in the connectivity of their amide hydrogen bonding units (C-centered/carboxamide vs. N-centered/anilide). This subtle change results in a ≈30-fold increase in the elongation constant for the [2.2]pCp -4,7,12,15-tetraanilide ( [2.2]pCpNTA ) compared to previously reported [2.2]pCp -4,7,12,15-tetracarboxamide ( [2.2]pCpTA ), and a ≈300-fold increase in the elongation constant for the [3.3]pCp -5,8,14,17-tetraanilide ( [3.3]pCpNTA ) compared to previously reported [3.3]pCp -5,8,14,17-tetracarboxamide ( [3.3]pCpTA ). The [n.n]pCpNTA monomers also represent the reversal of a previously reported trend in solution-phase assembly strength when comparing [2.2]pCpTA and [3.3]pCpTA monomers. The origins of the assembly differences are geometric changes in the association between [n.n]pCpNTA monomers—revealed by computations and X-ray crystallography—resulting in a more favorable slipped stacking of the intermolecular π-surfaces ( [n.n]pCpNTA vs. [n.n]pCpTA ), and a more complementary H-bonding geometry ( [3.3]pCpNTA vs. [2.2]pCpNTA ).  相似文献   

20.
Two aggregation-induced emission (AIE) macrocycles (DMP[5]-TPE and PCP[5]-TPE) were prepared by embedding Tetraphenylethene (TPE) unit into the skeletons of Dimethoxypillar[5]arene (DMP[5]) and [15]Paracyclophane ([15]PCP) at meso position, respectively. In crystal, the PCP[5]-TPE showed a distorted cavity, and the incubation of hexane inside the DMP[5]-TPE cavity caused a distinct change in the molecular conformation compared to PCP[5]-TPE. There was no complexation between PCP[5]-TPE and 1,4-dicyanobutane (DCB). UV absorption experiments showed the distorted cavity of DMP[5]-TPE hindered association with DCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号