首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure rotational spectrum of β-propiolactone (c-C2H4COO) has been recorded between 7 and 21 GHz using a pulsed jet Fourier transform microwave spectrometer. The resulting ground state spectroscopic constants guided the analysis of the rotationally-resolved infrared spectra of two bands that were collected using the far infrared beamline at the Canadian Light Source synchrotron. The observed modes correspond to motions best described as ring deformation (ν12) at 747.2 cm−1 and CO ring stretching (ν8) at 1095.4 cm−1. A global fit of 4430 a- and b-type transitions from the microwave spectrum and the two infrared bands provided an accurate set of ground state and excited state spectroscopic parameters. To complement the experimental results, the harmonic and anharmonic vibrational frequencies of all 21 infrared active modes of β-propiolactone have been calculated using the DFT B3LYP method (6-311+G(d,p), 6-311++G(2d,3p) basis sets).  相似文献   

2.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

3.
The Fourier transform infrared spectrum of gaseous 1,3,4-oxadiazole, C2H2N2O, has been recorded in the 800–1600 cm−1 wavenumber region with a resolution around 0.0030 cm−1. The four fundamental bands ν9(B1; 852.5 cm−1), ν14(B2; 1078.5 cm−1), ν4(A1; 1092.6 cm−1), and ν2(A1; 1534.9 cm−1) are analyzed by the standard Watson model. Ground state rotational and quartic centrifugal distortion constants are obtained from a simultaneous fit of ground state combination differences from three of these bands and previous microwave transitions. Upper state spectroscopic constants are obtained for all four bands from single band fits using the Watson model. The ν4 and ν14 bands form a c-Coriolis interacting dyad, and the two bands are analyzed simultaneously by a model including first and second order Coriolis resonance using the ab initio predicted Coriolis coupling constant . An extended local resonance in ν2 is explained as higher order b-Coriolis type resonance with ν6 + ν10, which is further perturbed globally by the ν15 + ν10 level. A fit of selected low-J transitions to a triad model including ν2(A1), ν6 + ν10(B1), and ν15 + ν10(A2) using an ab initio calculated Coriolis coupling constant is performed.The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration–rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

4.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

5.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

6.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

7.
We report new ab initio potential energy and dipole moment surfaces for the electronic ground state of HSOH, calculated by the CCSD(T) method (coupled cluster theory with single and double substitutions and a perturbative treatment of connected triple excitations) with augmented correlation-consistent basis sets up to quadruple-zeta quality, aug-cc-pV(Q+d)Z. The energy range covered extends up to 20 000 cm−1 above equilibrium. Parameterized analytical functions have been fitted through the ab initio points. Based on the analytical potential energy and dipole moment surfaces obtained, vibrational term values and transition moments have been calculated by means of the variational program TROVE. The theoretical term values for the fundamental levels νSH (SH-stretch) and νOH (OH-stretch), the intensity ratio of the corresponding fundamental bands, and the torsional splitting in the vibrational ground state are in good agreement with experiment. This is evidence for the high quality of the potential energy surface. The theoretical results underline the importance of vibrational averaging, and they allow us to explain extensive perturbations recently found experimentally in the SH-stretch fundamental band of HSOH.  相似文献   

8.
The FTIR spectrum of pentafluoroethane (R125) was measured in the mid infrared region from 900 to 4000 cm−1. Vibrational assignments for R125 are revised by comparison of previous and current experimental data with ab initio calculations at both the MP2/6-311+(d,p) and B3LYP/TZV+(3df,3p) levels of theory. High resolution FTIR spectra were recorded at room temperature and in an enclosive flow cell at a rotational temperature of 140 K. The cold spectrum was sufficiently resolved to enable rovibrational analyses of the overlapping ν4 (1200.7341 cm−1) and ν13 (1223.3 cm−1) bands, which have a/c hybrid and b-type character, respectively. Ground state combination differences were used to confirm assignment of 2375 lines to ν4 (Jmax = 86, Ka max = 50) and 2921 lines to ν13 (Jmax = 60, Ka max = 54). Effective rotational and centrifugal distortion constants were determined for ν4, and the polarization ratio was found to be . Severe Coriolis perturbations prevent any satisfactory fit to the ν13 band.  相似文献   

9.
The vibration-rotation bands of all the fundamentals and several overtone and combination vibrations of F12CP have been recorded. The C-F stretching fundamental ν3 was observed in strong Fermi resonance with the overtone 2ν20; a similar resonance was also observed between ν1 + ν3 and ν1 + 2ν10. The spectral analysis gave fundamental wavenumbers: ν1 = 1670.842 (9), ν2 = 375.428 (6), and ν3 = 780.10 (22) cm−1. The value of the equilibrium rotational constant Be was found to be 0.1758943 (81) cm−1. The harmonic force field for this molecule was derived from the wavenumbers of the three fundamentals and the l-doubling constant.  相似文献   

10.
The electronic spectrum of gas-phase tellurium dioxide has been recorded between 345 and 406 nm using the technique of laser-induced fluorescence spectroscopy. The TeO2 sample was prepared by direct heating of the solid and by seeding it in a continuous free-jet expansion in argon. Twenty-seven cold bands and thirty-two hot bands were assigned. The wavenumbers of the band origin and symmetric stretching and bending vibrational modes for the upper and lower states were determined in a simple least-squares fit: ν0 = 25526 cm−1, ω1 = 679 cm−1, ω2 = 220 cm−1, ω1 = 823 cm−1, ω2 = 282 cm−1.  相似文献   

11.
First measurements of line intensities for ν1 and ν3 bands of D232S are reported. About 300 intensities of D232S vibration–rotation lines were obtained from experimental high-resolution spectra recorded in the 1810–2051 cm−1 region with the Fourier Transform Spectrometer built in Reims. Empirical values of transition moment parameters for ν1 and ν3 bands of D232S were determined for the first time using a least-square fit to the observed intensities. Experimental D232S intensities were compared with recent global variational predictions [Vl.G. Tyuterev, L. Régalia-Jarlot, D.W. Schwenke, S.A. Tashkun, Y.G. Borkov, C. R. Phys. 5 (2004) 189–199] computed from isotopically invariant potential and dipole moment functions of the hydrogen sulphide molecule. Average discrepancy between these calculations and our observed data was 0.03 cm−1 for line positions of this spectral range. The discrepancy between these calculations and our measurements for the sum of line intensities was 5.5% and 3.5% for the ν1 and ν3 bands, correspondingly.  相似文献   

12.
Amorphous, nanocrystalline, and bulk AlO(OH) · xH2O crystals have six fundamental modes (FM) of vibration in a nonlinear AlO(OH) molecular structure. Most of them appear in groups of four IR and Raman bands. Their positions and relative intensities differ significantly in three specimens. The nanocrystals (monoclinic structure with z=8 molecules per unit cell) have four OH stretching bands at values enhanced by up to 360 cm−1 at 3120, 3450, 3560 cm−1 in comparison to those in bulk crystals or amorphous specimens. The first two bands are broad, bandwidth Δν1/2200 to 350 cm−1, while the other two are sharp, Δν1/290 cm−1. The sharp bands shift to 3525 and 3595 cm−1 after heating the sample at 100°C. They no longer appear after heating at 300 or 500°C for 2 h (the specimen decomposes to Al2O3), leaving behind only two bands at 3100 and 3400 cm−1. A Δν1/2 value of 500 cm−1 appears in the 3400 cm−1 in a delocalized distribution of H atoms. Two bands also occur at 3098 and 3300 cm−1 in bulk crystals (orthorhombic structure with z=4) or at 2990 and 3515 cm−1 in an amorphous sample. More than one bands appear in a FM vibration in occurrence of sample in more than one conformers. The amorphous sample has approximately the same conformer structure as the bulk crystals. An amorphous surface structure exists in nanocrystals with a group of three bands at 1420, 1510 and 1635 cm−1 in an interconnected network structure. It encapsulates the nanocrystals in an amorphous shell. Its volume fraction, 33% estimated from the integrated intensity in three bands, determines 2.2 nm thickness in the shell in spherical shape of nanocrystals in 35 nm diameter.  相似文献   

13.
The high resolution absorption spectrum of monodeuterated water, HDO, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13,020–14,115 cm−1 region dominated by the 4ν3 band. The achieved noise equivalent absorption (αmin10−9 cm−1) allowed detecting transitions with line strengths as small as 2×10−27 cm/molecule which is about 10 times lower than the smallest line intensities previously detected in the region.The rovibrational assignment of the spectrum was based on the results of the variational calculations of Schwenke and Partridge (SP) as well as recent calculations using a new potential energy surface performed by Voronin, Tolchenov and Tennyson (VTT). 2157 transitions involving 21 upper vibrational states were assigned to HD16O while only four bands were previously reported in the region. A set of 157 new energy levels could be derived. It includes rotational levels of several highly excited bending states, in particular the (0 11 0) pure bending state. For some states like the (1 0 3) and (0 2 3) Fermi dyad, effective Hamiltonian modelling was needed to establish the vibrational assignments of some rotational levels. VTT calculations were found to significantly improve the SP results, the rms deviation of the calculated and observed energies being decreased from 0.23 to 0.06 cm−1.Finally, 79 transitions of the 4ν3 band of the HD18O isotopologue were assigned, leading to the derivation of 48 levels, which are the most excited energy levels reported so far for this isotopologue.  相似文献   

14.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

15.
New sharp bands of formic acid have been observed in the near ultraviolet at the long wave-length end of the previously observed diffuse band system (2250–2500 Å) by considerably extending the absorption path length. Both the diffuse and sharp bands belong to the same vibrational system which is assigned to the π*n electronic transition in the carbonyl group. Extensive progressions are observed in the carbonyl stretching frequency which is greatly reduced in the excited state (fundamental ν3′ ≈ 1080 cm−1) and many intervals of about 400 cm−1 are assigned to the OCO bending frequency ν7′.A band contour analysis of the 2593 Å band shows that the molecule is nonplanar in the excited state because of the magnitude and sign of the inertial defect. From this analysis, the rotational constants for the excited state are S=1.8755, B0.4042, C=0.3378cm−1 By the plausible assumption that the important changes in the molecule are in the C=0 bond length, the OCO angle, and the nonplanarity due to the formyl hydrogen, the following excited state parameters are derived.rC=0 = 1.407A.The changes in formic acid are closely analogous to the changes in formyl fluoride as a result of the π*n transition.  相似文献   

16.
The semirigid bender Hamiltonian [Bunker and Landsberg, J. Mol. Spectrosc. 67, 374–385 (1977)] is used to fit the rotation-vibration energy level separations in the carbon suboxide molecule C3O2. We allow the CC bond lengths and CCO bond angles to change with the CCC bending angle ρ. A very good fit to the energy levels is obtained and, in particular, the B values are systematically fitted better than when the rigid bender is used. The dependence of the effective CCC bending potential function on the vibrations ν2, ν3, and ν4 is determined, and we find that excitation of ν3 or ν4 raises the barrier to linearity whereas excitation of ν2 lowers it. These results can be understood by considering the ρ dependence of the G-matrix elements. We determine that the barrier to CCC linearity in the zero-point vibrational state is 28 cm−1 but until more data are available for the ν1, ν5, and ν6 vibrations we cannot precisely determine the true barrier. However, it has been previously shown that the barrier is little affected by excitation of ν1 or ν5, and that it is reduced by 10–15 cm−1 by excitation of ν6. From these results we deduce that the barrier to CCC linearity in the true bending potential function is 33 cm−1 with an uncertainty of about 5 cm−1. Thus the equilibrium structure is bent at the central carbon atom; the equilibrium CCC angle is 157°.  相似文献   

17.
We present the high resolution absorption measurements of gaseous HONO at room temperature using continuous-wave cavity ring-down spectroscopy in the near-infrared region between 6017 and 6067 cm−1 at a resolution of 1 pm (0.037 cm−1). For the trans-HONO isomer an extensive analysis of the ν1+2ν3 combination band 6045.8089 cm–1 was performed starting from the results of a previous study for the 11 and 31 vibrational states [Guilmot J-M, Godefroid M, Herman M. Rovibrational parameters for trans-nitrous acid. J Mol Spectrosc 1993;160:387–400]. The present combination band is perturbed because of the existence of several dark states of HONO which could not be identified unambiguously. The rotational constants achieved for the 1132 state deviate slightly from the values which are predicted from the rotational constants achieved in the previous studies for the 11 and 31 vibrational states of trans-HONO.  相似文献   

18.
Using a high-resolution Fourier transform spectrum of hydrogen selenide in natural abundance, about 600 intensities of lines belonging to the ν1, ν3, and 2ν2 bands of H280Se were measured. A least-squares fit of these intensities was performed, allowing determination of the vibrational transition moments of these bands and their rotational corrections. Finally, the first derivatives of the dipole moment with respect to the normal coordinates q1 and q3 were found to be ∂μχ/∂q1 = (−0.5938 ± 0.010) × 10−1 and ∂μz/∂q3 = (0.5683 ± 0.010) × 10−1 Debye, respectively.  相似文献   

19.
Two weak stretching bands, ν1 + 3ν3 and 3ν1 + ν3, of the sulfur dioxide molecule have been recorded at high resolution and analyzed for the first time with using a Fourier transform Bruker IFS-120 HR interferometer. About 1000 transitions with Jmax. = 51, , and 900 transitions with Jmax. = 53, have been assigned to the bands ν1 + 3ν3 and 3ν1 + ν3, respectively. Analysis of the recorded spectra was made using the model of isolated vibrational states. Parameters obtained from the fit reproduce the initial experimental ro-vibrational energies with the rms deviation of 0.0006 and 0.0012 cm−1 for the bands, 3ν1 + ν3 and ν1 + 3ν3, respectively. The problem of determination of the intramolecular potential function of SO2 is discussed.  相似文献   

20.
Studies of five comparatively unperturbed infrared active bands in the spectrum of 10B2D6 were undertaken with a resolution of ca. 0.05 cm−1. These comprise three type-A bands (ν17, ν18, and ν5 + ν15), one type-B band (ν8), and one type-C band (ν14). Ground-state rotational and quartic centrifugal distortion constants were determined for the first time from a total of over 400 combination differences. Sets of upper-state parameters were determined for all five bands studied, and the effects of a number of minor Coriolis interactions between fundamental vibrations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号