首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper. Three dimensionless parameters, the dimensionless viscoelastic parameter ϑ, the dimensionless wave number and the dimensionless surface tension are introduced. A dimensionless characteristic equation describing the waves is derived. This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation. Based on the numerical solution, two critical values of ϑ, ϑ A =0.607 and ϑ B =2.380, which represent the appearance of the cutoff region and the disappearance of the strong dispersion region, are found. The effects of ϑ on the characteristic equation and the properties of the waves are discussed. The project supported by the National Natural Science Foundation of China (59709006)  相似文献   

2.
Two-dimensional stagnation-point flow of viscoelastic fluids is studied theoretically assuming that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary-layer theory is used to simplify the equations of motion which are further reduced to a single non-linear third-order ODE using the concept of stream function coupled with the technique of the similarity solution. The equation so obtained was solved using Chebyshev pseudo-spectral collocation-point method. Based on the results obtained in the present work, it is concluded that the well-established but controversial prediction that in stagnation-point flows of viscoelastic fluids the velocity inside the boundary layer may exceed that outside the layer may just be an artifact of the rheological model used in previous studies (namely, the second-grade model). No such peculiarity is predicted to exist for the Maxwell model. For a UCM fluid, a thickening of the boundary layer and a drop in wall skin friction coefficient is predicted to occur the higher the elasticity number. These predictions are in direct contradiction with those reported in the literature for a second-grade fluid.  相似文献   

3.
In this paper we study two-dimensional flows of incompressible viscoelastic Maxwell media with Jaumann corotational derivative in the rheological constitutive law. In the general case, due to the incompressibility condition, the equations of motion have both real and complex characteristics. Group properties of this system are studied. On this basis, two submodels of the Maxwell model are selected, which can be reduced to hyperbolic ones. More precisely, we consider plane shear flow between two parallel planes and Couette type flow caused by the inertial cylinder rotation. As a result, we obtain the closed systems of three equations of mixed type, which describe nonlinear transverse waves in an incompressible Maxwell fluid. It is demonstrated that discontinuities can develop in elastic media even from smooth initial data. Stability of shocks in the Maxwell fluid with and without retardation time is discussed.  相似文献   

4.
We prove that planar elongational flow of the upper convected Maxwell fluid is linearly stable and analyze the associated spectral problem.  相似文献   

5.
Nonlinear periodic gravity waves propagating at a constant velocity at the surface of a fluid of infinite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. It is known that there are both regular waves (for which all the crests are at the same height) and irregular waves (for which not all the crests are at the same height). We show numerically the existence of new branches of irregular waves which bifurcate from the branch of regular waves. Our results suggest there are an infinite number of such branches. In addition we found additional new branches of irregular waves which bifurcate from the previously calculated branches of irregular waves.  相似文献   

6.
A theory for linear surface gravity waves on a semi-infinite layer of viscoelastic fluid described by a Jeffrey model is presented. Results are given for the decay rate and the phase velocity as a function of the parameters of the fluid: a nondimensional time constant, and a ratio of the retardation time to the relaxation time. At small wave numbers the behavior is Newtonian. In other cases depending on the nondimensional parameters, a number of possible other behaviors exist. The influence of the non-dimensional parameters on the growth rate of Rayleigh-Taylor instability is also discussed.  相似文献   

7.
A characteristic equation is derived that describes the spatial decay of linear surface gravity waves on Maxwell fluids. Except at small frequencies, the derived dispersion relation is different from the temporal decay dispersion relation which is normally studied within fluid mechanics. The implications for waves on viscous Newtonian fluids using the two different dispersion relations is briefly discussed. The wave number is measured experimentally as function of the frequency in a horizontal canal. Seven Newtonian fluids and four viscoelastic liquids with constant viscosity have been used in the experiments. The spatial decay theory for Newtonian fluids fits well to the experimental data. The model and experiments are used to determine limits for the Maxwell fluid time numbers for the four viscoelastic liquids. As a result of low viscosity it was not possible within this study to obtain these time numbers from oscillatory experiments. Therefore, a comparison of surface gravity wave experiments with theory is applicable as a method to evaluate memory times of low viscosity viscoelastic fluids.  相似文献   

8.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

9.
Summary The problem of the generation of waves due to small rolling oscillations of a thin vertical plate partially immersed in uniform finite-depth water is investigated here by utilizing two mathematical methods assuming the linearised theory of water waves. In the first method, the use of eigenfunction expansion of the velocity potentials on the two sides of the plate produces the amplitude of wave motion at infinity in terms of an integral involving the unknown horizontal velocity across the gap, and also in terms of another integral involving the unknown difference of the potential across the plate. These unknown functions satisfy two integral equations. Any one of these, when solved numerically, can be used to compute the amplitude of the wave motion set up at either infinity on the two sides of the plate for various values of the wave number.In the second method, the problem is formulated in terms of a hypersingular integral equation involving the difference of the potential function across the plate. The hypersingular integral equation is solved numerically, and its numerical solution is used to compute the wave amplitude at infinity. The two methods produce almost the same numerical results. The results are illustrated graphically, and a comparison is made with the deep-water result. It is observed that the deep-water result effectively holds good if the plate is partially immersed to the order of one-tenth of the bottom depth.This work was initiated when the first Author was visiting Mathematics Department, Indian Institute of Science, Bangalore. It was partially supported by DST, and by CSIR. The authors take this opportunity to thank the Managing Editor for his suggestions to improve the paper in the present form.  相似文献   

10.
The problem of plane steady gravitational waves of finite amplitude, caused by a periodically distributed pressure over the surface of an ideal incompressible gravity fluid stream of finite depth, is considered. It is assumed that these waves do not vanish as the pressure becomes constant, but become free waves, which exist at constant pressure and special values of the stream velocity. As in [1], where a stream of finite depth is considered, such waves will be designated composite as contrasted with forced waves which vanish together with the variable part of the pressure. A general method is given for computing the composite wave characteristics. The first three approximations are computed to the end. An approximate equation for the wave profile is found.  相似文献   

11.
应用势流理论中的Rankine源面元法和时域步进法,求解了有限水深船舶在规则波中运动的水底压力变化。将速度势分解成基本势、局部势和记忆势,以叠模解作为基本势对自由表面条件和物面条件进行了线性化,通过在水底布置面元来满足水底条件。利用研制的水底压力-水面波浪测量系统,测量了不同入射波船模表面波形与水底压力的时历曲线,理论计算与实验结果符合较好,验证了自编程序的正确性。通过对比二者的等高线图发现,水底压力与表面波形的峰谷有较好的一致性,并且压力较波形更为平滑。  相似文献   

12.
This paper analytically investigates the unsteady peristaltic transport of the Maxwell fluid in a finite tube.The walls of the tube are subjected to the contraction waves that do not cross the stationa...  相似文献   

13.
This paper presents an analysis for the unsteady flow of an incompressible Maxwell fluid in an oscillating rectangular cross section.By using the Fourier and Laplace transforms as mathematical tools,the solutions are presented as a sum of the steady-state and transient solutions.For large time,when the transients disappear,the solution is represented by the steady-state solution.The solutions for the Newtonian fluids appear as limiting cases of the solutions obtained here.In the absence of the frequency of oscillations,we obtain the problem for the flow of the Maxwell fluid in a duct of a rectangular cross-section moving parallel to its length.Finally,the required time to reach the steady-state for sine oscillations of the rectangular duct is obtained by graphical illustrations for different parameters.Moreover,the graphs are sketched for the velocity.  相似文献   

14.
New exact solutions corresponding to the second problem of Stokes for Maxwell fluids have been established by means of Laplace transforms. For large times, these solutions reduce to the well-known steady-state solutions which are periodic in time and independent of the initial conditions. Furthermore, the transient solutions are in accordance with the previous solutions obtained using the Fourier sine transform. The required time to get the steady-state is determined by graphical illustrations. This time decreases if the frequency of the velocity increases. The effects of the material parameters on the decay of the transients in time are also investigated by graphs.  相似文献   

15.
The propagation and properties of Rayleigh waves on curved surfaces are investigated theoretically. The Rayleigh wave dispersion equation for propagation on a curved surface is derived as a parabolic equation, and its penetration depth is analyzed using the curved surface boundary. Reciprocity is introduced to model the diffracted Rayleigh wave beams. Simulations of Rayleigh waves on some canonical curved surfaces are carried out, and the results are used to quantify the influence of curvature. It is found that the velocity of the surface wave increases with greater concave surface curvature, and a Rayleigh wave no longer exists once the surface wave velocity exceeds the bulk shear wave velocity. Moreover, the predicted wave penetration depth indicates that the energy in the Rayleigh wave is transferred to other modes and cannot propagate on convex surfaces with large curvature. A strong directional dependence is observed for the propagation of Rayleigh waves in different directions on surfaces with complex curvatures. Thus, it is important to include dispersion effects when considering Rayleigh wave propagation on curved surfaces.  相似文献   

16.
面元法求解有限水深船舶兴波及水底压力变化   总被引:2,自引:1,他引:2  
应用势流理论中的格林函数方法计算了船舶定常运动的水动力参数,将有限水深Kelvin移动兴波源格林函数分解成三部分:简单Rankine源集合、局部扰动项和波函数项。在亚临界和超临界航速时,采用不同的积分顺序来消除被积函数的奇异性。利用面元法在船体表面上分布Kelvin源,计算了有限水深下船体表面的源强、压力分布及表面兴波,比较了有限与无限水深结果的区别和联系,进一步求解了船舶航行时引起的水底压力变化,计算结果与实验测量结果吻合良好。  相似文献   

17.
The character of equilibrium of a Maxwell fluid in the presence of a magnetic field has been investigated. It is shown that the solution is characterized by a variational principle when the direction of magnetic field is either horizontal or vertical. For both directions, an approximate solution has been developed for a fluid layer of finite depth and exponentially varying density. It is found that the stability criterion remains unaffected by the viscosity parameters, although they influence the rate at which the unstable stratification departs from the equilibrium position. The question of excitation of waves has also been considered in detail.  相似文献   

18.
Two fundamental flows, namely, the Stokes and Couette flows in a Maxwell fluid are considered. The exact analytic solutions are derived in the presence of the slip condition. The Laplace transform method is employed for the development of such solutions. Limiting cases of no-slip and viscous fluids can be easily recovered from the present analysis. The behaviors of embedded flow parameters are discussed through graphs.  相似文献   

19.
螺旋波是时空斑图结构演化的一个典型研究对象,无论从理论研究意义还是从应用价 值来看都是非常重要的,它可涉及到的领域包括:数学、物理、力学、天文、化学、生物、 医学等学科. 本文较为详细地讨论了螺旋波的动力学行为, 主要包含以下几方面: 螺旋波的 形成、螺旋波的几种常见的形式、螺旋波波头的运动、螺旋波失稳方式等. 由于螺旋波及其 破碎后的行为在许多具体的系统中的有害作用, 本文也介绍了螺旋波的几种控制方案: 反馈 控制方案、外力控制方案、调整参数控制方案等.  相似文献   

20.
The velocity field and the associated tangential tension corresponding to a potential vortex in a Maxwell fluid are determined by means of the Hankel transform. The similar solutions for a Newtonian fluid appear as a limiting case of our solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号