首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here an exhaustive and complete conformational study on the conformational potential energy hypersurface (PEHS) of dopamine (DA) interacting with the dopamine D2 receptor (D2-DR). A reduced 3D model for the binding pocket of the human D2-DR was constructed on the basis of the theoretical model structure of bacteriorhodopsin. In our reduced model system, only 13 amino acids were included to perform the quantum mechanics calculations. To obtain the different complexes of DA/D2-DR, we combined semiempirical (PM6), DFT (B3LYP/6-31G(d)), and QTAIM calculations. The molecular flexibility of DA interacting with the D2-DR was evaluated from potential energy surfaces and potential energy curves. A comparative study between the molecular flexibility of DA in the gas phase and at D2-DR was carried out. In addition, several molecular dynamics simulations were carried out to evaluate the molecular flexibility of the different complexes obtained. Our results allow us to postulate the complexes of type A as the "biologically relevant conformations" of DA. In addition, the theoretical calculations reported here suggested that a mechanistic stepwise process takes place for DA in which the protonated nitrogen group (in any conformation) acts as the anchoring portion, and this process is followed by a rapid rearrangement of the conformation allowing the interaction of the catecholic OH groups.  相似文献   

2.
In this paper a deeper insight into the chorismate-to prephenate-rearrangement, catalyzed by Bacillus subtilis chorismate mutase, is provided by means of a combination of statistical quantum mechanics/molecular mechanics simulation methods and hybrid potential energy surface exploration techniques. The main aim of this work is to present an estimation of the preorganization and reorganization terms of the enzyme catalytic rate enhancement. To analyze the first of these, we have studied different conformational equilibria of chorismate in aqueous solution and in the enzyme active site. Our conclusion is that chorismate mutase preferentially binds the reactive conformer of the substrate--that presenting a structure similar to the transition state of the reaction to be catalyzed--with shorter distances between the carbon atoms to be bonded and more diaxial character. With respect to the reorganization effect, an energy decomposition analysis of the potential energies of the reactive reactant and of the reaction transition state in aqueous solution and in the enzyme shows that the enzyme structure is better adapted to the transition structure. This means not only a more negative electrostatic interaction energy with the transition state but also a low enzyme deformation contribution to the energy barrier. Our calculations reveal that the structure of the enzyme is responsible for stabilizing the transition state structure of the reaction, with concomitant selection of the reactive form of the reactants. This is, the same enzymatic pattern that stabilizes the transition structure also promotes those reactant structures closer to the transition structure (i.e., the reactive reactants). In fact, both reorganization and preorganization effects have to be considered as the two faces of the same coin, having a common origin in the effect of the enzyme structure on the energy surface of the substrate.  相似文献   

3.
Protein kinases are important enzymes controlling the majority of cellular signaling events via a transfer of the gamma-phosphate of ATP to a target protein. Even after many years of study, the mechanism of this reaction is still poorly understood. Among many factors that may be responsible for the 1011-fold rate enhancement due to this enzyme, the role of the conserved aspartate (Asp166) has been given special consideration. While the essential presence of Asp166 has been established by mutational studies, its function is still debated. The general base catalyst role assigned to Asp166 on the basis of its position in the active site has been brought into question by the pH dependence of the reaction rate, isotope measurements, and pre-steady-state kinetics. Recent semiempirical calculations have added to the controversy surrounding the role of Asp166 in the catalytic mechanism. No major role for Asp166 has been found in these calculations, which have predicted the reaction process consisting of an early transfer of a substrate proton onto the phosphate group. These conclusions were inconsistent with experimental observations. To address these differences between experimental results and theory with a more reliable computational approach and to provide a theoretical platform for understanding catalysis in this important enzyme family, we have carried out first-principles structural and dynamical calculations of the reaction process in cAPK kinase. To preserve the essential features of the reaction, representations of all of the key conserved residues (82 atoms) were included in the calculation. The structural calculations were performed using the local basis density functional (DFT) approach with both hybrid B3LYP and PBE96 generalized gradient approximations. This kind of calculation has been shown to yield highly accurate structural information for a large number of systems. The optimized reactant state structure is in good agreement with X-ray data. In contrast to semiempirical methods, the lowest energy product state places the substrate proton on Asp166. First-principles molecular dynamics simulations provide additional support for the stability of this product state. The latter also demonstrate that the proton transfer to Asp166 occurs at a point in the reaction where bond cleavage at the PO bridging position is already advanced. This mechanism is further supported by the calculated structure of the transition state in which the substrate hydroxyl group is largely intact. A metaphoshate-like structure is present in the transition state, which is consistent with the X-ray structures of transition state mimics. On the basis of the calculated structure of the transition state, it is estimated to be 85% dissociative. Our analysis also indicates an increase in the hydrogen bond strength between Asp166 and substrate hydroxyl and a small decrease in the bond strength of the latter in the transition state. In summary, our calculations demonstrate the importance of Asp166 in the enzymatic mechanism as a proton acceptor. However, the proton abstraction from the substrate occurs late in the reaction process. Thus, in the catalytic mechanism of cAPK protein kinase, Asp166 plays a role of a "proton trap" that locks the transferred phosphoryl group to the substrate. These results resolve prior inconsistencies between theory and experiment and bring new understanding of the role of Asp166 in the protein kinase catalytic mechanism.  相似文献   

4.
<正>Ab initio density functional theory (DFT) calculations have been used to study regioselectivity in the Diels-Alder (DA) cycloaddition reaction between 1,3-pentadiene and methyl acrylate. The DFT calculations were performed with the B3LYP functional and 6-311+G~(**) basis set. Two synchronous transition structures corresponding to the formation of different regioisomers associated with the two reaction channels have been located. The DFT calculations generated transition geometries with a very small degree of asynchronicity. The present analysis shows that these reactions have normal electron demand (NED) character. Moreover, the results obtained from energetic and electronic approaches with the exception of Houk's rule confirm that ortho regioisomer is the major product.  相似文献   

5.
Density functional theory (DFT) calculations were carried out to study the molecular mechanism of the phosphoryl transfer reaction catalyzed by cyclin-dependent kinases (CDKs). The DFT study presented here shows that CDKs catalyze the phosphoryl transfer reaction from ATP to the serine substrate through a single step mechanism with a SN2-like transition state.  相似文献   

6.
Quantum mechanical (QM) cluster calculations have been performed on a model of ZSM-5 at DFT and MP2 levels. We investigated how the adsorption energies and the energetics of alkoxide intermediate formation of six different alkene substrates, ethene, propene, 1-butene, cis/trans butene, and isobutene, vary in this zeolite model. An analysis of the DFT geometric, electronic, and energetic parameters of the zeolite-substrate complexes, transition states, and alkoxide intermediates is performed using principal components analysis (PCA) and partial least squares (PLS). These deliver an insight into the correlated changes that occur between molecular structure and energy along the reaction coordinate between the physisorbed and chemisorbed species within the zeolite. To the best of our knowledge, this is the first occasion multivariate techniques such as PCA or PLS have been employed to profile the changes in electronics, distances, and angles in QM calculations of catalytic systems such as zeolites. We find the calculated adsorption and the alkoxide intermediate energies correlate strongly with the absolute charge on the substrate and the length of the substrate double bond. The transition states' energies are not affected by the zeolite framework as modeled, which explains why they correlate strongly with the gas-phase substrate protonation energy. Our cluster results show that for ethene, propene, 1-butene, and isobutene, the relative energetics associated with the formation of the alkoxide intermediate in ZSM-5 follow the same trends as calculations where the effects of the framework are included.  相似文献   

7.
The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.  相似文献   

8.
The active site of the mononuclear molybdenum enzyme xanthine oxidase has an LMoOS(OH) center that catalyzes the hydroxylation of substrate (L representing an enedithiolate ligand contributed by a pterin cofactor in the enzyme). Reaction of the enzyme with cyanide results in the replacement of the Mo=S group with a second Mo=O group, which results in loss of enzyme activity. To understand the basis for this loss of activity, we have computationally examined the interaction of a model for the LMoO2(OH) as well the LMoOTe(OH) congener of the enzyme with formamide (a substrate for the enzyme). Our electronic structure calculations for the oxo congener indicate a reduced electron density on the hydrogen being transferred from substrate in the course of the reaction, a shorter O-H bond in the transition state, and a longer nascent O-C bond of product, factors which combine to account for the loss of reactivity in the LMoO2(OH) species. Interestingly, our calculations indicate that the Te congener is characterized by an increased electron density on the hydrogen species being transferred, a longer Te-H bond in the transition state, and a shorter O-C nascent bond in the product and suggest that a Te congener of xanthine oxidase, were it to be prepared experimentally, should exhibit catalytic activity.  相似文献   

9.
We present here results of a series of density functional theory (DFT) studies on enzyme active site models of nitric oxide synthase (NOS) and address the key steps in the catalytic cycle whereby the substrate (L-arginine) is hydroxylated to N(omega)-hydroxo-arginine. It has been proposed that the mechanism follows a cytochrome P450-type catalytic cycle; however, our calculations find an alternative low energy pathway whereby the bound L-arginine substrate has two important functions in the catalytic cycle, namely first as a proton donor and later as the substrate in the reaction mechanism. Thus, the DFT studies show that the oxo-iron active species (compound I) cannot abstract a proton and neither a hydrogen atom from protonated L-arginine due to the strength of the N-H bonds of the substrate. However, the hydroxylation of neutral arginine by compound I and its one electron reduced form (compound II) requires much lower barriers and is highly exothermic. Detailed analysis of proton transfer mechanisms shows that the basicity of the dioxo dianion and the hydroperoxo-iron (compound 0) intermediates in the catalytic cycle are larger than that of arginine, which makes it likely that protonated arginine donates one of the two protons needed during the first catalytic cycle of NOS. Therefore, DFT predicts that in NOS enzymes arginine binds to the active site in its protonated form, but is deprotonated during the oxygen activation process in the catalytic cycle by either the dioxo dianion species or compound 0. As a result of the low ionization potential of neutral arginine, the actual hydroxylation reaction starts with an initial electron transfer from the substrate to compound I to create compound II followed by a concerted hydrogen abstraction/radical rebound from the substrate. These studies indicate that compound II is the actual oxidant in NOS enzymes that performs the hydroxylation reaction of arginine, which is in sharp contrast with the cytochromes P450 where compound II was shown to be a sluggish oxidant. This is the first example of an enzyme where compound II is able to participate in the reaction mechanism. Moreover, arginine hydroxylation by NOS enzymes is catalyzed in a significantly different way from the cytochromes P450 although the active sites of the two enzyme classes are very similar in structure. Detailed studies of environmental effects on the reaction mechanism show that environmental perturbations as appear in the protein have little effect and do not change the energies of the reaction. Finally, a valence bond curve crossing model has been set up to explain the obtained reaction mechanisms for the hydrogen abstraction processes in P450 and NOS enzymes.  相似文献   

10.
A theoretical study of the hydride transfer between formate anion and nicotinamide adenine dinucleotide (NAD(+)) catalyzed by the enzyme formate dehydrogenase (FDH) has been carried out by a combination of two hybrid quantum mechanics/molecular mechanics techniques: statistical simulation methods and internal energy minimizations. Free energy profiles, obtained for the reaction in the enzyme active site and in solution, allow obtaining a comparative analysis of the behavior of both condensed media. Moreover, calculations of the reaction in aqueous media can be used to probe the dramatic differences between reactants state in the enzyme active site and in solution. The results suggest that the enzyme compresses the substrate and the cofactor into a conformation close to the transition structure by means of favorable interactions with the amino acid residues of the active site, thus facilitating the relative orientation of donor and acceptor atoms to favor the hydride transfer. Moreover, a permanent field created by the protein reduces the work required to reach the transition state (TS) with a concomitant polarization of the cofactor that would favor the hydride transfer. In contrast, in water the TS is destabilized with respect to the reactant species because the polarity of the solute diminishes as the reaction proceeds, and consequently the reaction field, which is created as a response to the change in the solute polarity, is also decreased. Therefore protein structure is responsible of both effects; substrate preorganization and TS stabilization thus diminishing the activation barrier. Because of the electrostatic features of the catalyzed reaction, both media preferentially stabilize the ground-state, thus explaining the small rate constant enhancement of this enzyme, but FDH does so to a much lower extent than aqueous solution. Finally, a good agreement between experimental and theoretical kinetic isotope effects is found, thus giving some credit to our results.  相似文献   

11.
A theoretical study for the water-assisted scavenging mechanism of pyridoxamine with 1,4-dicarbonyls was investigated by density functional theory (DFT) method at B3LYP/6-31G(d) basis set. Two scavenging pathways were examined: imine formation vs. pyrrole ring formation. In addition, solvent effect was performed using the Onsager model. Our calculations indicated that the pyrrole ring formation was the preferred pathway for the reaction, which results were consistent with experimental data. The participation of one water molecule in the reaction would reduce the active energy considerably and the energy barriers of all the transition states in the water-assisted reaction were much lower than those of the non-assisted reaction. The presence of a solvent in the continuum model disfavors the reaction. Hydrogen-bonding interactions and steric hindrance effect play an important role in the scavenging reaction.  相似文献   

12.
六氯苯与OH自由基的反应   总被引:8,自引:0,他引:8  
六氯苯(HCB)增被世界各地广泛地作为杀虫剂使用^[1,2],它是一种易挥发的有毒物质,能在大气中远距离迁移,以至在南极洲和北冰洋均有存在,漂浮在大气上空的HCB对地球环境赞成不良的影响^[3],此外,HCB还经常作杀菌剂和用在有机合成中,由于它能在生物体内积,对生态的破坏作用不可忽视^[5~7],因此研究HCB与大气中可能存在的活泼自由基的反应,对于了解HCB的迁移过程和降解机理,为最终消除这一有害物质很有意义,最近,Brubaker等^[1]研究了HCB与OH自由基的反应,测定了该反应的活化能与速率常数,并根据与OH的反应估算了HCB在大气中的半衰期,但是,该文末提及反应生成的产物和可能的反应机理,本文旨在通过理论计算给出一条合理的反应路径。  相似文献   

13.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

14.
This paper presents an ab initio (RHF/6-31G** and MP2(full)6-31G**) and density functional (DFT) study of the structure and energetics of formation of an intermolecular complex which is the simplest model of an active center lysozyme with a substrate. The calculated energy of complex formation is 41.4 (RHF), 53.4 (MP2), and 52.7 kcal/mole (DFT). The proton transfer reaction is a concerted reaction having an energy barrier of 41.1 (RHF), 31.6 (MP2), and 25.3 (DFT) kcal/mole.  相似文献   

15.
The whole reaction of the deacylation of class C beta-lactamase was investigated by performing quantum chemical calculations under physiological conditions. In this study, the X-ray crystallographic structure of the inhibitor moxalactam-bound class C beta-lactamase (Patera et al. J. Am. Chem. Soc. 2000, 122, 10504-10512.) was utilized and moxalactam was changed into the substrate cefaclor. A model for quantum chemical calculations was constructed using an energy-minimized structure of the substrate-bound enzyme obtained by molecular mechanics calculation, in which the enzyme was soaked in thousands of TIP3P water molecules. It was found that the deacylation reaction consisted of two elementary processes. The first process was formation of a tetrahedral intermediate, which was initiated by the activation of catalytic water by Tyr150, and the second process was detachment of the hydroxylated substrate from the enzyme, which associated with proton transfer from the side chain of Lys67 to Ser64O(gamma). The first process is a rate-determining process, and the activation energy was estimated to be 30.47 kcal/mol from density functional theory calculations considering electron correlation (B3LYP/6-31G**). The side chain of Tyr150 was initially in a deprotonated state and was stably present in the active site of the acyl-enzyme complex, being held by Lys67 and Lys315 cooperatively.  相似文献   

16.
The use of suitable chiral ligands is an efficient means of producing highly enantioselective transition‐metal catalysts. Herein, we report a facile, economic, and effective strategy for the design of chiral ligands that demonstrate enhanced enantioselectivity and catalytic efficacy. Our simple strategy employs naturally occurring or synthetic inorganic nanosheets as huge and rigid planar substituents for, but not limited to, naturally available α‐amino‐acid ligands; these ligands were successfully used in the vanadium‐catalyzed asymmetric epoxidation of allylic alcohols. The crucial role of the inorganic nanosheets as planar substituents in improving the enantioselectivity of the reaction was clearly revealed by relating the observed enantiomeric excess with the distribution of the catalytic centers and the accessibility of the substrate molecules to the catalytic sites. DFT calculations indicated that the LDH layer improved the enantioselectivity by influencing the formation and stability of the catalytic transition states, both in terms of steric resistance and H‐bonding interactions.  相似文献   

17.
The deacylation step of serine protease catalysis is studied using DFT and ab initio QM/MM calculations combined with MD/umbrella sampling calculations. Free energies of the entire reaction are calculated in the gas phase, in a continuum solvent, and in the enzyme elastase. The calculations show that a concerted mechanism in the gas phase is replaced by a stepwise mechanism when solvent effects or an acetate ion are added to the reference system, with the tetrahedral intermediate being a shallow minimum on the free energy surface. In the enzyme, the tetrahedral intermediate is a relatively stable species ( approximately 7 kcal/mol lower in energy than the transition state), mainly due to the electrostatic effects of the oxyanion hole and Asp102. It is formed in the first step of the reaction, as a result of a proton transfer from the nucleophilic water to His57 and of an attack of the remaining hydroxyl on the ester carbonyl. This is the rate-determining step of the reaction, which requires approximately 22 kcal/mol for activation, approximately 5 kcal/mol less than the reference reaction in water. In the second stage of the reaction, only small energy barriers are detected to facilitate the proton transfer from His57 to Ser195 and the breakdown of the tetrahedral intermediate. Those are attributed mainly to a movement of Ser195 and to a rotation of the His57 side chain. During the rotation, the imidazolium ion is stabilized by a strong H-bond with Asp102, and the C(epsilon)(1)-H...O H-bond with Ser214 is replaced by one with Thr213, suggesting that a "ring-flip mechanism" is not necessary as a driving force for the reaction. The movements of His57 and Ser195 are highly correlated with rearrangements of the binding site, suggesting that product release may be implicated in the deacylation process.  相似文献   

18.
The use of suitable chiral ligands is an efficient means of producing highly enantioselective transition-metal catalysts. Herein, we report a facile, economic, and effective strategy for the design of chiral ligands that demonstrate enhanced enantioselectivity and catalytic efficacy. Our simple strategy employs naturally occurring or synthetic inorganic nanosheets as huge and rigid planar substituents for, but not limited to, naturally available α-amino-acid ligands; these ligands were successfully used in the vanadium-catalyzed asymmetric epoxidation of allylic alcohols. The crucial role of the inorganic nanosheets as planar substituents in improving the enantioselectivity of the reaction was clearly revealed by relating the observed enantiomeric excess with the distribution of the catalytic centers and the accessibility of the substrate molecules to the catalytic sites. DFT calculations indicated that the LDH layer improved the enantioselectivity by influencing the formation and stability of the catalytic transition states, both in terms of steric resistance and H-bonding interactions.  相似文献   

19.
We have performed electronic structure calculations to study the evolution of the stacking fault energy at (111) surfaces of metals. We first apply an sp–d tight-binding model and then increase the accuracy on the electronic structure by using density functional theory (DFT) calculations. We show in this way the relative importance of spd hybridization both in the formation of defects at the surface of metals and in reconstruction phenomena as a function of band filling especially at the end of transition metal series. Comparing our results with atomistic simulations it is concluded that although atomistic calculations are powerful tools to investigate relaxation mechanisms at surfaces, a higher degree of accuracy on electronic structure is necessary to quantify the energy of some defects at surfaces like stacking faults. In particular long range interactions associated to less localized sp electrons are playing a rather important role in reconstruction phenomena for metals like platinum and gold. These results are backed up by DFT calculations applied to iridium, platinum and gold (111) surfaces.  相似文献   

20.
The modeling of reactivity in an ionic liquid is examined with DFT and DFT/MM calculations on the S(N)2 intramolecular rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole induced by amines. Experimental research has shown that the reaction occurs in 1-butyl-3-methylimidazolium tetrafluoroborate, and in conventional organic solvents such as acetonitrile with comparable rates. The structure for the reactants, transition states and products for the rate-determining step are optimized, and the energy barrier is computed in three different environments: gas phase, water solvent, and ionic liquid. The results are encouraging in describing the energy barrier in the ionic liquid. A simple model is formulated to explain the effect of the solvent in this particular process, and a procedure to study theoretically the reactivity in an ionic liquid is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号