首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogel wound dressing was prepared by radiation crosslinking. It was used of on patients in the Navy 411 Hospital and some other hospitals. From sixty case studies of the clinical effects, the results showed that: 1. drug releasing slowly releives the pain effectively for prolonged period of application; 2. The dressing can reduce the oozing liquid from the wound and make the wound heal faster; 3. The number of the dressing change is greatly reduced. All the data indicates that the dressing is superior to the conventional kinds.  相似文献   

2.
Radiation processing of an aqueous solution of polymer initiated by OH radicals formed by radiolysis of water is applied for preparation of hydrogel wound dressing and plant growth promoter. Recently, Fenton reagent that generates OH radicals was successfully applied to synthesize PVP hydrogel. The Fenton reaction also can be applied to the depolymerization of chitosan. These progresses in the syntheses of hydrogel and oligo-chitosan by radiation and non-radiation methods such as hydrolysis, oxidative degradation, photolysis, sonolysis and degradation by microwave are reviewed to survey a possibility to reduce the costs of production. Radiation synthesized hydrogel should target value-added medical products because only radiation can crosslink and sterilize simultaneously. Oligo-chitosan can be produced economically by irradiation of solid chitin by Fenton reagent, if necessary.  相似文献   

3.
High transparent and biocompatible hydrogel dressing with bioactivity is attractive for clinical skin repair. Here we report a high optically transparent interpenetrating network (IPN) hydrogel that was fabricated by sericin and polyacrylamide. The hydrogels possess pH-dependent degradation as well as high porosity and porous structures with different sized diameters and distribution. Moreover, the swelling behaviors, degradation dynamics, and mechanical strength can be flexibly regulated by adjusting the content of sericin. In addition, the hydrogel system is compatible with hosting cells owing to its excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival. Together, our study demonstrates that the sericin-polyacrylamide interpenetrating network hydrogel may serve as a visualized dressing material for real-time monitoring of wounds.  相似文献   

4.
天然多糖海藻酸钠制备的水凝胶具有优越的生物相容性和生物组织相似性,作为生物医用材料在药物控制释放、组织工程支架、抗菌材料及创伤敷料等领域发挥着越来越大的作用。本文在介绍海藻酸钠物化性质的基础上,重点综述了非共价键交联(静电作用、氢键、范德华力、亲疏水作用等)海藻酸钠水凝胶的制备方法以及性能表征方法,最后讨论了制备方法及性能表征研究中的一些需要解决的问题。  相似文献   

5.
Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.  相似文献   

6.
In order to obtain a more ideal hydrogel wound dressing, crosslinked hydrogel films blended with polyvinyl alcohol (PVA), polyvinyl pyrrolidone, kappa-carrageenan (KC), and powder silk were prepared by electron beam, and their physiochemical properties were investigated as a combination of function factors. The experimental results showed that the gel fraction of the hydrogel films depended mainly on irradiation dose and the monomer concentration of the polymers, the properties of hydrogel could be greatly extended or improved by blending homopolymers. The rate of gel formation of the hydrogel was raised, and the water evaporation from hydrogel could be retarded after mixing with KC, while the tensile strength of hydrogel films were obviously increased after mixing with silk. Toxicity and healing effect of PVA/PVP/KC/silk blended hydrogel films as wound dressings were evaluated. The irradiated blended hydrogel showed satisfactory properties for wound dressing, the hydrogel did not induceany acute general toxic effects, and it is effective for fast healing of wound.  相似文献   

7.
An adhesive yet easily removable burn wound dressing represents a breakthrough in second‐degree burn wound care. Current second‐degree burn wound dressings absorb wound exudate, reduce bacterial infections, and maintain a moist environment for healing, but are surgically or mechanically debrided from the wound, causing additional trauma to the newly formed tissues. We have developed an on‐demand dissolvable dendritic thioester hydrogel burn dressing for second‐degree burn care. The hydrogel is composed of a lysine‐based dendron and a PEG‐based crosslinker, which are synthesized in high yields. The hydrogel burn dressing covers the wound and acts as a barrier to bacterial infection in an in vivo second‐degree burn wound model. A unique feature of the hydrogel is its capability to be dissolved on‐demand, via a thiol–thioester exchange reaction, allowing for a facile burn dressing removal.  相似文献   

8.
Due to the decreasing self-repairing ability, elder people are easier to form chronic wounds and suffer from slow and difficult wound healing. It is desirable to develop a novel wound dressing that can accelerate chronic wound healing in elderly subjects to decrease the pain of patients and save medical resources. In this work, Heparin and basic fibroblast growth factor(bFGF) were dissolved in the mixing solution of 4-arm acrylated polyethylene glycol and dithiothreitol to form hydrogel dressing in vitro at room temperature without any catalysts, which is convenient and easy to handle in clinic application. In vitro re-lease test shows the bFGF could be continuously released for at least 7 days, whereas the dressing surface integrity maintained for 3 days degradation in PBS solution. Three groups of treatments including bFGF-Gel, bFGF-Sol and control without any treatment were applied on the full-thickness wound on the 22 months old mice back. The wound closure rate and histological and immunohistochemical staining all illustrated that bFGF-Gel displayed a better wound healing effect than the other two groups. Thus, as-prepared hydrogel dressing seems supe-rior to current clinical treatment and more effective in elderly subjects, which shows promising potential to be applied in the clinic.  相似文献   

9.
Anti-infection and neovascularization at the wound site are two vital factors that accelerate diabetic wound healing. However, for a wound healing dressing, the two functions need to work at different sites(inner and outer), giving big challenges for dressing design. In this study, we fabricated a novel sodium alginate/chitosan(SA/CS) Janus hydrogel dressing by the assembly of SA hydrogel loaded with silver nanoparticles(Ag NPs) and CS hydrogel impregnated with L-arginine loaded sodium alginate ...  相似文献   

10.
Hydrogels based on poly(vinyl alcohol), water-soluble chitosan and glycerol made by irradiation followed by freeze–thawing were evaluated as wound dressing. MTT assay suggested that the extract of hydrogels was nontoxic towards L929 mouse fibroblasts. Compared to gauze dressing, the hydrogel can accelerate the healing process of full-thickness wounds in a rat model. Wounds treated with hydrogel healed at 11th day postoperatively and histological observation showed that mature epidermal architecture was formed. These indicate that it is a good wound dressing.  相似文献   

11.
Polymer gels as soft biomaterials have found diverse applications in biomedical field, e.g. in management and care of wound as wound dressing.The recent researches on nanocomposite materials have shown that some properties of polymers and gels significantly improve by adding organoclay into polymeric matrix. In this work, in order to obtain wound dressing with better properties, nanocomposite hydrogel wound dressing was prepared using combination of polyvinyl alcohol hydogel and organoclay, i.e. Na-montmorillonite, via the freezing-thawing method. The effect of organoclay quantity on the structural, swelling, physical and mechanical properties of nanocomposite hydrogel wound dressing was investigated. The results showed that the nanocomposite hydrogels could meet the essential requirements for the reasonable wound dressing with some desirable characteristics such as relatively good swelling, appreciated vapour transmission rate, excellent barrierity against microbe penetration and mechanical properties. The results also indicated that the quantity of the clay added to the nanocomposite hydrogel is the key factor in obtaining such suitable properties required for wound dressing.  相似文献   

12.
Excellent radiation resistance is a prerequisite for pressure-sensitive hydrogels to be used in high-energy radiation environments. In this work, tannic acid-modified boron nitride nanosheet(BNNS-TA) is first prepared as the radiation-resistant additive by a facile one-step ball milling of hexagonal boron nitride and tannic acid. Then, polyacrylamide(PAAm)-based pressure-sensitive hydrogel doped with BNNS-TA and Fe3+ions is fabricated. The ternary BNNS-TA/Fe3+/PAAm hydrogel...  相似文献   

13.
Hydrogels are interesting as wound dressing for burn wounds to maintain a moist environment. Especially gelatin and alginate based wound dressings show strong potential. Both polymers are modified by introducing photocrosslinkable functionalities and combined to hydrogel films (gel‐MA/alg‐MA). In one protocol gel‐MA films are incubated in alg‐MA solutions and crosslinked afterward into double networks. Another protocol involves blending both and subsequent photocrosslinking. The introduction of alginate into the gelatin matrix results in phase separation with polysaccharide microdomains in a protein matrix. Addition of alg(‐MA) to gel‐MA leads to an increased swelling compared to 100% gelatin and similar to the commercial Aquacel Ag dressing. In vitro tests show better cell adhesion for films which have a lower alginate content and also have superior mechanical properties. The hydrogel dressings exhibit good biocompatibility with adaptable cell attachment properties. An adequate gelatin‐alginate ratio should allow application of the materials as wound dressings for several days without tissue ingrowth.  相似文献   

14.
A novel hemostatic and absorbent wound dressing material compatible with 3D printing is developed to address deficiencies in current wound dressing protocol. The design involves an open celled, microporous hydrogel foam via a high internal phase emulsion (HIPE) template with biocompatible components and tunable hemostatic character by kaolin loading, the viscosity and cure kinetics of which are tailored for 3D printing applications. The use of nontoxic mineral oil organic phase results in cytocompatability with human dermal fibroblasts. Kaolin distribution is shown by X‐ray diffraction and elemental dispersive spectroscopy to be exfoliated and dispersed in the hydrogel dressing. In addition to demonstrating high fluid absorption and noncytotoxicity of relevant cell lines, the high internal phase emulsion polymers (polyHIPEs) also match the hemostatic performance of commercial wound dressing materials. Furthermore, the polyHIPEs display the requisite rheological properties for 3D printing that result in the fabrication of a prototype dressing with hierarchical porosity and a large number of controllable form factors.  相似文献   

15.
In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing.In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV–vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.  相似文献   

16.
A novel hydrogel based on chitosan–poly(acrylamide-co-acrylic acid) (CAA) with different formulations were synthesized by the effect of gamma radiation. The magnetic CAA hydrogels were also synthesized and characterized by using different techniques, e.g., TEM and XRD. The prepared hydrogels and magnetic hydrogel nanocomposite were utilized for in situ cobalt nanoparticle preparation and employed as a reaction media in catalytic reduction of 2-nitrophenol (2-NP), to 2-aminophenol (2-AP). The experimental parameters that affect the reduction rates such as temperature and amount of catalyst were also, investigated.  相似文献   

17.
<正>The hydrogel wound dressing based on polyvinyl alcohol(PVA) was prepared by the freezing-thawing cyclic method.The dehydration kinetics of prepared hydrogels was determined using the experimental method and mathematical modeling based on diffusion mechanism.The results show that the dehydration rate of PVA hydrogel wound dressing inversely depends on the hydrogel thickness as well as water content of the wound.On the other hand,the initial water content of hydrogel and the atmospheric humidity have little direct effect on the dehydration rate.The good agreement between experimental and mathematical modeling results in early stages of dehydration process shows that the predominate factor determining the dehydration of these wound dressings is diffusion.  相似文献   

18.
The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.  相似文献   

19.
Attempts are being made to develop an ideal wound dressing with excellent biomechanical and biological properties. Here, a thermos-responsive hydrogel is fabricated using chitosan (CTS) with various concentrations (1%, 2.5%, and 5% w/v) of solubilized placental extracellular matrix (ECM) and 20% β-glycerophosphate to optimize a smart wound dressing hydrogel with improved biological behavior. The thermo-responsive CTS (TCTS) alone or loaded with ECMs (ECM-TCTS) demonstrate uniform morphology using SEM. TCTS and ECM1%-TCTS and ECM2.5%-TCTS show a gelation time of 5 min at 37 °C, while no gel formation is observed at 4 and 25 °C. ECM5%-TCTS forms gel at both 25 and 37 °C. The degradation and swelling ratios increase as the ECM content of the hydrogel increase. All the constructs show excellent biocompatibility in vitro and in vivo, however, the hydrogels with a higher concentration of ECM demonstrate better cell adhesion for fibroblast cells and induce expression of angiogenic factors (VEGF and VEGFR) from HUVEC. Only the ECM5%-TCTS has antibacterial activity against Acinetobacter baumannii ATCC 19606. The data obtained from the current study suggest the ECM2.5%-TCTS as an optimized smart biomimetic wound dressing with improved angiogenic properties now promises to proceed with pre-clinical and clinical investigations.  相似文献   

20.
Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca2+, and ionic cross-linking is facilitated by lowering the solution pH. The resulting sodium alginate/gelatin HX-12C-loaded hydrogel (CaAGEAM) has good mechanical and adhesion properties, biocompatibility and in vitro degradability. Its extraordinary antibacterial efficacy (>98%) is verified by an antibacterial experiment. More importantly, in vivo experiments further demonstrate its healing-promotion effect, with a 95% wound healing rate by day 9. Tissue staining demonstrates that the hydrogel containing antimicrobial peptides is effective in suppressing inflammation. The dressing promotes wound healing by stimulating the deposition of skin appendages and collagen. The results of this study suggest that composite hydrogels containing antimicrobial peptides are a promising new type of dressing to promote the healing of infected wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号