首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Absorption spectra of 1,1′-diethyl-2,2′-dicarbocyanine iodide (DDI) have been obtained in ethanol/water mixtures. Increase of ionic strength obtained by addition of salts (e.g. NaCl) to the solvent mixture containing 10% of H2O and 90% of EtOH leads to appearance of a new absorption band at 849 nm. Intensity of this band increases with salt concentration which suggests that this spectral feature is related to a DDI aggregate. However, no emission has been observed with excitation at 850 nm indicating that this feature does not correspond to a J-type aggregate. Addition of NaCl to DDI solutions possessing the EtOH/H2O (v:v) ratio different from 1:9 does not induce appearance of the new absorption band.  相似文献   

2.
Novel Oligodeoxynucleotide analogues containing 3′-C-threo-methylene phosphodiester internucleoside linkages were synthesized on automated DNA-synthesizers using the phosphoramidite approach. The sugar modified phosphoramidite building block 5 was obtained by phosphitylation of 1-(2,3-dideoxy-5-O-(4,4′-dimethoxytrityl)-3-C-hydroxymethyl-β-D-threo-pentofuranosyl)thymine (4) which was synthesized in only three steps from 5′-O-(4,4′-dimethoxytrityl)thymidine (1). The hybridization properties and enzymatic stability of the oligonucleotide analogues were studied by UV experiments. 17-Mers having one or three modifications in the middle or two modifications in each end hybridized to DNA with moderate lowered affinity compared to unmodified 17-mers (ΔTm 1–3°C per modification). Furthermore, the end-modified and all-modified oligonucleotides were stable towards snake venom phosphodiesterase.  相似文献   

3.
2-(2′-Hydroxy-3′-methoxyphenyl)benzothiazole reacts with copper(II) in an ethanol/water mixture to form an O,S chelate which exhibits the remarkable property of changing the chelation site above a pH of ca. 5.0, to the O,N site. The detailed kinetics of this reaction in an ethanol/water mixture (3:1) at a temperature of 25 °C was investigated using a stopped-flow spectrophotometric technique employing a wavelength of 400 nm. The initial complex, Cu(O,S), is formed via a fast, reversible second-order complex formation step whereupon the formation of the Cu (O,N) follows first order kinetics. The Cu(O,N) complex is, however, unstable towards internal electron exchange and after the reaction is complete, a black polymeric material very slowly precipitates out of solution. Rate and equilibrium constants for the postulated reactions are presented and discussed.  相似文献   

4.
3′,5′-di-tert-butyldimethylsilyl-2,2′-anhydrouridine 3 was hydrolyzed under basic conditions to yield selectively 3′-tert-butyldimethylsilylarabinouridine 5 in 85 % yield. 3′,5′-disilyl-arabinouridine derivatives 4 and 6 also led selectively to 5 under the same conditions. These reactions suggest an intramolecular participation of the 2′-hydroxyl group in the desilylation and can be used to prepare rapidly and in high yield 3′-silylaraU derivatives.  相似文献   

5.
7,8,2′,3′,4′,5′-Hexachloro-11-methoxy-6H-cyclopenta[a]pyrene-6-spiro-1′-cyclopenta-2′,4′-diene 5 has been obtained by the reaction of phenalenone and 1,2,3,4-tetrachlorocyclopentadiene. The gross structure of 5 has been determined by the X-ray analysis. The ground-state properties of 5were discussed from the spectroscopic data, dipole moment and bond lengths.  相似文献   

6.
Substituted thymidine derivatives are of interest because of their potential antiviral properties. We demonstrate a general strategy for synthesis of 3′-substituted thymidine derivatives, consisting of activation via N-3 alkylation of 2,3′-cyclothymidine followed by nucleophilic opening at the 3′-position. Examples include demonstration of carbon-carbon bond formation at the 3′-position.  相似文献   

7.
Chemoselective oxime ligation of cyclopeptide, fluorescein and mannose derivatives at the 3′-end of an oligonucleotide was achieved. The conjugation was performed by reacting oxyamine containing reporter groups to an oligonucleotide bearing an aldehyde at the 3′-extremity. The aldehyde was generated by mild periodate oxidation of a 1,2-aminoalcohol which was readily incorporated at the 3′-end by automated DNA synthesis using the corresponding commercially available support. The straightforward chemical access, their stability in biological media as well as their unchanged hybridisation properties emphasise the interest of such 3′-conjugates.  相似文献   

8.
The coordination of 1,5-bis-(1′-phenyl-3′-methyl-5′-pyrazolone-4′)-1,5-pentanedione (BPMPPD) and 2,2′-bipyridine (bipy) with lanthanide ions in water-alcohol solution has been studied. Binuclear complexes of the types : Ln2(BPMPPD)3(bipy)2·nH2O (n = 2 for Y, n = 4 for Eu, Gd, Dy, Ho, Er, Tm and Yb); Ln2(BPMPPD)3bipy·nH2O (n = 10 for La, n = 3 for Pr, Nd, Sm and Tb) were formed. The compounds were characterized by elemental analysis, molar conductance, IR, UV, 1H NMR spectroscopy, thermogravimetric analysis and fluorescence spectra.  相似文献   

9.
2,2′-Bis[(4,7-dimethyl-inden-1-yl)methyl]-1,1′-binaphthyl and [2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides have been synthesized from 2,2′-bis(bromomethyl)-1,1′-binaphthylene. 2,2′-Bis(bromomethyl)-1,1′-binaphthylene was alkylated with the lithium salt of 4,7-dimethylindene to yield 2,2′-bis[1-(4,7-dimethyl-indenylmethyl)]-1,1′-binaphthylene (S)-(−)-9. The lithium salt of 9 was metalated with either titanium trichloride followed by oxidation or zirconium tetrachloride to give titanocene dichloride (S)-(+)-10 and zirconocene dichloride 11. The known complexes ansa-[2,2′-bis[(1-indenyl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides were formed and hydrogenated to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-1,1′-binaphthyl]titanium and -zirconium dichlorides 12 and 14 or to ansa-[2,2′-bis[(4,5,6,7-tetrahydroinden-1-yl)methyl]-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl]titanium dichloride 13 whose solid state structure was determined by X-ray crystallography. Complex 13 adopts a C1-symmetrical conformation in the solid state, but is conformationally mobile in solution, exhibiting C2-symmetry in its room temperature NMR spectra.  相似文献   

10.
X-Ray structures of 1′,1′″-disubstituted biferrocenium triiodide salts have been studied and the dramatic effects of substituents on the intramolecular electron-transfer rates are described.  相似文献   

11.
The room temperature photophysical properties of several sulphonated and unsulphonated 6-(2′-hydroxy-4′-methoxyphenyl)-s-triazines were investigated in a range of solvents by means of steady state and picosecond fluorescence spectroscopy. Compounds possessing phenyl or p-tolyl groups in the s-triazinyl ring exhibit only a very weak normal Stokes-shifted fluorescence, arising from the initially excited chromophore. Substitution of phenoxy groups into the s-triazinyl ring results in the appearance of an additional longer-wavelength fluorescence which is assigned to the keto tautomer, formed following excited state intramolecular proton transfer (ESIPT). The rate constant for the (ESIPT) process that occurs in sodium 3-(3′,5′-diphenoxy-2′,4′,6′-triazinyl)-4-hydroxy-2-methoxybenzene sulphonate in water is estimated to be greater than 1011 s−1.  相似文献   

12.
1,1′-Methylene-3,3′-dialkyldiimidazolium salts have been deprotonated with n-butylithium in the presence of palladium(II) iodide to give the percarbene complexes 1 (alkyl=Me) and 2 (alkyl=Et), each containing two bidentate 1,1′-methylene-3,3′-dialkyldiimidazolin-2,2′-diylidene chelate ligands. The X-ray structure analysis of 1 reveals a stereochemistry in which the two spiro-linked six-membered metallacycles adopt boat-like conformations strongly bending out of the PdC4 coordination plane in opposite directions. The carbenoid imidazole rings, which are rotated by +42 and −43°, respectively, relative to this plane, break down into two tightly bound π-systems (N=4C=4N,= C=C) connected by long C---N bonds.  相似文献   

13.
The complexes of 3,3′,5,5′-tetrabromo-2,2′-biphenol (TBBPh) with 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) and triethylamine (TEA) were studied by FTIR spectroscopy. In chloroform and in acetonitrile a proton transfer from TBBPh to N-bases (MTBD, TEA) occurs. In chloroform solution the protonated N-base molecules are hydrogen-bonded to the deprotonated TBBPh molecules, whereas in acetonitrile the complexes dissociate. The intra- as well as intermolecular hydrogen bonds within the chains show large proton polarizability.  相似文献   

14.
15.
The enantiomers of the title compound, the important photochromic material (RS)-1b, have been enriched semipreparatively by liquid chromatography. As a consequence, we were able to determine the barrier of the thermal interconversion (R)-1b(S)-1b via time-dependent polarimetry, amounting to ΔG=85.9 kJ/mol at 22.0°C in d6-DMSO (Table 2). The thermal equilibration of the corresponding merocyanine 2b was monitored in d6-DMSO by time-dependent 1H NMR, resulting in ΔG1=102.8 and ΔG2=92.0 kJ/mol at 22°C (Table 1). This means that, starting from (RS)-1b, the opened isomer 2b is attained by a slow reaction (ΔG1=102.8 kJ/mol, Fig. 4). Therefore, the merocyanine 2b cannot be identified with the intermediate required for the fast process of C(sp3)–O bond cleavage (ΔG=85.9 kJ/mol) upon the above enantiomerization of (RS)-1b. Apparently, these two thermal isomerizations (Fig. 4) are independent of each other. The structure of the unknown intermediate of the interconversion (R)-1b(S)-1b must therefore differ from the known one of merocyanine 2b.
Table 1. Equilibration between spiro compounds (RS)-1 and merocyanines 2 at 22°C, measured by time-dependent UV absorptions[3] for (RS)-1a2a and by time-dependent 1H NMR intensities for the other compounds

Article Outline

1. Introduction
2. Equilibration of the merocyanine 2b with the spiro compound (RS)-1b
3. Preparative separation and characterization of the enantiomers of the spiro compound (RS)-1b
4. Enantiomerization of the spiro compounds (R)- and (S)-1b
5. Discussion of the two different isomerizations investigated
6. Experimental
6.1. General methods
6.2. (±)-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b[43]
6.3. (+)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.4. (−)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.5. 4-Nitro-2-[(E)-2′-(1′′,3′′,3′′-trimethyl-3H′′′-2′′-indoliumyl)-1′-ethenyl]-1-phenolate 2b[19]
Acknowledgements
References

1. Introduction

Many derivatives of 1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1a (Scheme 1) are of interest because of their photochromism.[2] The parent molecule 1a can be transformed photochemically into the merocyanine 2a which isomerizes thermally with a very high rate back to 1a.[3] Therefore, unsubstituted 1a has no practical value with respect to photochromism. This situation changes upon the introduction of a nitro group into the 6-position: the title compound 1b has probably been cited in the literature most often among all photochromic materials. The corresponding merocyanine 2b is obtained by irradiation and reverts to the equilibrium mixture (Scheme 1) consisting predominantly of the spiro compound 1b. The rate of isomerization of 2b is much lower than that of the 2a1a reversal.[3, 4, 5, 6, 7 and 8] Although analogs have now been found which are more stable to light than 1b, the latter has been significant for the development of practical applications of photochromism and continues to be significant for basic research,[2, 9 and 10] e.g. with respect to 1b chemically bonded to another molecule. A further nitro group in the 8-position again changes the properties: only a very small amount of the spiro compound 1c appears in the thermal equilibrium[11 and 12] ( Scheme 1) in dipolar aprotic solvents, which means that the observed photochromism is a reversible one with limited applicability.  相似文献   

16.
R. Kikumoto  T. Kobayashi 《Tetrahedron》1966,22(10):3337-3343
Oxindole reacts with p-nitrobenzyl chloride ot give 3-(4′-nitrobenzyl) oxindole, but with o-nitrobenzyl chloride abnormal product, 2′-hydroxy-spiro[2H-indole-2,3′-3′H-indole] (Vb) is produced. The structure of Vb has been elucidated on the basis of the IR, UV and mass spectra, and confirmed by the analogous reactions of 3-methyl-, 4-methyl- and 3,3-dimethyloxindoles with o-nitrobenzyl chloride. Isatin reacts with o-nitrobenzyl chloride to give o-nitrobenzyloxireno[,3]-oxindole (X).  相似文献   

17.
Enantiopure 1,1′-binaphthyl-2,2′-dicarboxylic acids (R)-1 and (S)-1 have been synthesized through the lipase-catalyzed kinetic resolution of the racemic 2,2-bis(hydroxymethyl)-1,1′-binaphthyl (±)-2 and subsequent oxidation of the hydroxymethyl groups.  相似文献   

18.
Nineteen sulphonated 2-hydroxybenzophenones and three sulphonated 2,2′-dihydroxybenzophenones have been prepared and compared with a commercially available member of each class of uv absorber as photo-protective agents for wool. Treated fabrics were exposed to Philips ML G/74 lamps and the extent of photo-tendering was assessed by measuring breaking loads and tear strengths. In general, 2-hydroxybenzophenones with 3-alkyl substituents provide better protection against photo-tendering than absorbers lacking 3-alkyl substituents. 2,2′-Dihydroxybenzophenones are more effective than 2-hydroxybenzophenones.

On the basis of effectiveness and ease of synthesis, 2,2′-dihydroxy-4,4′-bis-w-sulphobutyloxybenzophenone (VIIb) shows most promise as a photo-protective agent. At the 5% level of application it trebles the lifetime of wool fabric during exposure to sunlight through window glass. It also retards the photo-tendering and fading of wool fabrics containing either a red or a blue milling acid dye.  相似文献   


19.
3-exo,3′-exo-(1R,1′R)-bicamphor (12) is obtained from 3-exo,3′-exo-(1R,1′R)-bithtiocamphor (3) by condensation with hydrazine hydrate followed by hydrolysis of the resulting dihydropyridazine 11. Deprotonation of 12 with NaH and subsequent treatment with potassium hexacyanoferrate (III) furnishes the 2,2′-dioxo-3,3′-bibornanylidene 13, whilst reduction of 12 with L1AlH4 affords the 3,3′-biisoborneol 16. Further related transformations to various 2,2′-difunctional 3,3′-bibornane derivatives are described, which are could be of interest as chiral ligands  相似文献   

20.
The azoles 2-(2′-hydroxyphenyl)oxazole (HPO) and 2-(2′-hydroxyphenyl)-4-methylthiazole (HPT) have been synthesised and studied in order to compare their photophysical characteristics. Their absorption and emission properties are reported in non-polar, alcoholic and aqueous media. Ground and excited state pK data were determined by spectroscopy and a model is proposed to explain the behaviour of HPT and HPO as a function of the pH. Excitation spectra and quantum chemical calculations suggest an equilibrium of ground state conformers. The calculations also predict a small energy barrier for rotation in the first excited singlet state for the proton transferred tautomers. The resulting twisted structure of the tautomer form possesses a biradicaloid nature, and is near-degenerate in energy with the first excited triplet state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号