首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An API 3000 triple-quadrupole instrument and a QSTAR Pulsar quadrupole time-of-flight (TOF) mass spectrometer were compared for the determination of phosphopeptides by precursor ion scanning in both the positive and negative nanoelectrospray ionization modes. The limits of detection for synthetic phosphopeptides were similar (500 amol microl(-1)) for both types of instruments when monitoring precursors of -79 Da (PO(3)(-)). However, the quadrupole TOF system was approximately fivefold more sensitive (1 fmol microl(-1)) than the triple-quadrupole instrument (5 fmol microl(-1)) when monitoring precursors of 216 Da (immonium ion of phosphotyrosine). The recently introduced Q(2)-pulsing function, which enhances the transmission of fragment ions of a selected m/z window from the collision cell into the TOF part, improved the sensitivity of precursor ion scans on a quadrupole TOF instrument. The selectivity of precursor ion scans is much better on quadrupole TOF systems than on triple quadrupoles because the high resolving power of the reflectron-TOF mass analyzer permits high-accuracy fragment ion selection at no expense of sensitivity. This minimizes interferences from other peptide fragment ions (a-, b-, and y- type) of the same nominal mass but with sufficient differences in their exact masses. As a result, the characteristic immonium ion of phosphotyrosine at m/z 216.043 can be utilized for the selective detection of tyrosine phosphorylated peptides. Our data suggest that, in addition to their superior performance for peptide sequencing, quadrupole TOF instruments also offer a very viable alternative to triple quadrupoles for precursor ion scanning, thus combining high sensitivity and selectivity for both MS and MS/MS experiments in one instrument.  相似文献   

2.
Improved resolution for a miniaturized instrument is demonstrated at high masses using a pulsed extraction, 3(") linear time-of-flight (TOF) mass analyzer. This illustrates the utility of a small and simple mass spectrometer for biological/medical analyses. Current and future applications suggested by this instrument include rapid mass spectral reading of oligonucleotides that differ in one base (single nucleotide polymorphisms), distinction of biomarker signatures from different species of bacterial spores (biological weapons detection) and point-of-care instruments for proteomics-based diagnostics. We have incorporated a two-stage, pulsed-extraction design that places the focal plane of the ions at the detector channel plate surface. The ions are accelerated to a total energy of 12 keV to enable detection of high-mass proteins in a design that incorporates a floatable flight tube set at the voltage of the front channel plate of the detector. The resultant elimination of post-acceleration at the detector is intended to improve mass resolution by reducing the difference in arrival times between ions and their neutral products. Resolutions of one part in 1200 at m/z 4500 and one part in 600 at m/z 12 000 have been achieved. Proteins with molecular masses up to 66 000 Da, mixtures of oligonucleotides, and biological spores have all been successfully measured, results that increase the potential use of this TOF analyzer.  相似文献   

3.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A triple-quadrupole instrument and a hybrid quadrupole/time-of-flight (TOF) mass spectrometer were compared for the determination of pharmaceutical compounds in water samples. The drugs investigated were the analgesics Ibuprofen, Fenoprofen, Ketoprofen, Naproxen, and Diclofenac. The recently introduced Q2-pulsing function, which enhances the transmission of fragment ions of a selected m/z window from the collision cell into the TOF analyzer, improved the sensitivity of product ion scans on the quadrupole/TOF instrument. The selectivity is much better on quadrupole/TOF systems than on triple quadrupoles because the high resolving power of the reflectron-TOF mass analyzer permits high-accuracy fragment ion selection. This minimizes interferences from environmental matrices and allows acquisition of full spectra for selected analytes with better signal-to-noise characteristics than comparable spectra obtained with a scanned quadrupole. The qualitative information obtained (mass accuracy, resolution and full-scan spectra) by hybrid quadrupole/TOF mass spectrometry allows a more certain identification of analytes in environmental matrices at trace levels. Sample enrichment of water samples was achieved by a solid-phase extraction procedure. Average recoveries for loading 1 L of samples varied from 88 to 110%, and the quantification limits were less than 1.2 ng/L for the triple-quadrupole instrument (in MRM mode) and less than 3 ng/L for the quadrupole/TOF instrument.  相似文献   

5.
A single-stage ion mirror in a time-of-flight (TOF) mass spectrometer (MS) can perform first order velocity focusing of ions initially located at a start focal plane while second order velocity focusing can be achieved using a double-stage reflectron. The situation is quite different when an ion source extraction field is taken into account. In this case which is common in any practical matrix-assisted laser desorption/ionization (MALDI) TOF-MS a single-stage reflectron, for example, cannot perform velocity focusing at all. In this paper an exact, analytic solution for an electric field inside a one-dimensional reflectron has been found to achieve universal temporal focusing of ions having an initial velocity distribution. The general solution is valid for arbitrary electric field distributions in the upstream (from the ion source to the reflectron) and downstream (from the reflectron to an ion detector) regions and in a decelerating part of the reflectron of a reflectron TOF mass spectrometer. The results obtained are especially useful for designing MALDI reflectron TOF mass spectrometers in which the initial velocity distribution of MALDI ions is the major limiting factor for achieving high mass resolution. Using analytical expressions obtained for an arbitrary case, convenient working formulas are derived for the case of a reflectron TOF-MS with a dual-stage extraction ion source. The special case of a MALDI reflectron TOF-MS with an ion source having a low acceleration voltage (or large extraction region) is considered. The formulas derived correct the effect of the acceleration regions in a MALDI ion source and after the reflectron before detecting ions.  相似文献   

6.
Matrix-assisted laser desorption/ionization (MALDI) was used for the on-line analysis of single particles. An aerosol was generated at atmospheric pressure and particles were introduced into a time-of-flight (TOF) mass spectrometer through a single-stage differentially pumped capillary inlet. Prior to entering the mass spectrometer, a matrix was added to the particles using a heated saturator and condenser. A liquid matrix, 3-nitrobenzyl alcohol (NBA), and a solid matrix, picolinic acid (PA), were used. Particles were ablated with a 351 nm excimer laser and the resulting ions were mass-separated in a two-stage reflectron TOF mass spectrometer. Aerosol particles containing the biomolecules erythromycin and gramicidin S were analyzed with and without the matrix addition step. The addition of NBA to the particles resulted in mass spectra that contained an intact molecular ion mass peak. In contrast, PA-coated particles did not yield molecular ion peaks from matrix-coated particles.  相似文献   

7.
A matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer was developed which uses a novel reflectron composed of a grounded cylinder and an adjustable endcap electrode to provide high-order kinetic energy focusing for a miniaturized mass analyzer. The nearly quadratic potential form of the reflecting field focuses ions desorbed from a source of very small dimensions formed by placing the sample probe within the centered hole of the coaxial dual channel plate detector. At the same time, the depth of the reflectron can be adjusted to accommodate a short drift length between the source/detector and the reflectron. For larger drift lengths, in particular to allow the addition of an XY stage for the analysis of sample arrays, endcap reflectron focusing can be combined with time-delayed ion extraction to achieve good mass resolution. The instrument has been used for the analysis of peptides digested with trypsin or carboxypeptidase, and also small DNA oligomers.  相似文献   

8.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A miniaturized time-of-flight (TOF) mass spectrometer utilizes an end-cap reflectron to achieve high kinetic energy focusing and improved mass resolution. However, the coaxial geometry gives rise to considerable losses in sensitivity resulting from reflected ion trajectories close to the center. These trajectories were modeled, using initial ion velocity distributions in the radial direction up to 300 m s(-1), and the portion of the active area of the detector that is utilized was evaluated experimentally using a variable diameter iris diaphragm. The sensitivity was improved by modification of the reflectron by tilting the end-cap electrode 4 degrees and redirecting the ions to a portion of the detector active area. Sensitivity was then measured as 3 fmol of the peptide substance P.  相似文献   

10.
Mass spectra of atactic polystyrene were collected into the mega-dalton mass range with a matrix-assisted laser desorption ionization time of flight (MALDI TOF) mass spectrometer, which incorporates a cryodetector comprised of an array of 16 superconducting tunnel junctions (STJ). The STJ cryodetector, theoretically, has no loss in signal response at any mass compared with the reduced signal found at high mass when using a conventional secondary-ionization detector. Since ion detection at high m/z is one of the fundamental limitations of mass spectrometry (MS), the cryodetector was used to explore the high m/z limit of the MALDI TOF technique for the analysis of two polymer types. Mass spectra were collected for polystyrene at Mn 170, 400, 900, and 2000 kDa and polymethyl methacrylate (PMMA) at Mn 62.6 kDa and 153.7 kDa. For polystyrene, the data showed a trend toward increased aggregation and charge state with mass. The Mn 2 MDa polystyrene data revealed a peak at m/z 2.2 MegaTh and a charge state analysis revealed that these ions were primarily polystyrene aggregates with a mass of approximately 4 MDa. This aggregate assignment was possible because the cryodetector response allows for the determination of a charge state up to about four. The contribution of each charge state for a selected peak can be determined in this fashion. This analysis revealed the preferential formation of doubly charged even-numbered aggregates over odd-numbered aggregates for high molecular mass polystyrene. A potential mechanism for the aggregation process for doubly charged species is discussed.  相似文献   

11.
12.
Compared to continuous extraction, pulsed extraction (PE) of ions formed by matrix-assisted laser desorption/ionization (MALDI) in time-of-flight (TOF) mass spectrometers significantly improves mass resolution. Parameters such as extraction voltage, delay time, and correction pulse must be varied, however, to achieve optimum mass resolution over a broad mass range because the PE method is mass dependent. We previously reported a novel method, mass correlated acceleration (MCA), which we have now combined with a reflectron MALDI TOF mass spectrometer to further enhance mass resolution over a broader mass range. Unlike the PE method, MCA is not mass dependent and high resolution mass spectra can be achieved with a single tuning of instrument parameters. The ions may be brought into focus simultaneously, i.e., the multi-channel recording advantage can be more fully realized. The MCA dual-stage ion source design includes an extraction pulse region and an acceleration region that contains a time-dependent waveform correlated with mass. We demonstrate the validity of this novel technique with applications in peptide mixture analysis and protein digests of lysozyme and bovine serum albumin.  相似文献   

13.
The coupling of ion mobility spectrometry (IMS) instruments with mass spectrometers has been described since early in IMS development, most commonly with quadrupole mass analyzers. The recent development of IMS with time-of-flight (TOF) instruments has demonstrated that the time compatibility (IMS milliseconds and TOFMS microseconds) of the two techniques enables rapid two-dimensional separations to be performed, theoretically in the order of seconds for a complete analysis. This study presents a unique way to operate a traditional IMS/QMS system to attain separations similar to those achieved with IMS/TOF. For this new approach, the quadrupole was slowly scanned in the single-ion monitoring mode while IMS spectra were continually embedded in each m/z step. In this way, two-dimensional separations (IMS drift times and m/z) were obtained using the traditional IMS/QMS arrangement. An example of a five amino acid separation (quadrupole scan of 40 m/z values at a rate of approximately 7 steps/min) led to a complete two-dimensional analysis within 6 min, comparable to rapid chromatographic separations with mass spectrometry. Proposed approaches to reduce the analysis time are discussed and a reduction in the analysis time to less than 1 min is feasible when the IMS/QMS separation conditions are optimized.  相似文献   

14.
A time-of-flight mass spectrometer in reflectron configuration has been used for the real-time detection of combustion products. The products of a premixed laminar C2H4/O2 flame at atmospheric pressure were sampled along its axis, diluted with inert gas and carried to the ion source as a molecular beam under minimal perturbation. Electron ionization and different optical ionization sources are compared. Photoionization was achieved with laser radiation from a Nd:YAG nanosecond pulsed laser at two different wavelengths in the UV range (266 and 355 nm). The mass spectra obtained using laser wavelength of 355 nm and electron ionization present a series of ions regularly spaced by 18 m/z units up to m/z 2000. This series allowed precise calibration of the instrument for compounds of high molecular weight. Information on the chemical nature of the analyzed species has been obtained by comparing mass spectra produced with different ionization methods. In order to better understand the growth mechanisms, polycyclic aromatic hydrocarbon sequences have been analyzed by fast Fourier transform of the mass spectra.  相似文献   

15.
We report the feasibility of multistage fragmentation in combination with a fast background subtraction method, yielding the equivalent of MS3. The first quadrupole selects an ion of interest, and the ion is axially accelerated into Q2 to generate fragment ions. Subsequent stages of mass selection and fragmentation are obtained by quadrupolar resonant excitation within the Q2 collision cell. The fragments are analyzed downstream by either a resolving quadrupole or a time-of-flight (TOF) mass spectrometer, and multistage spectra are obtained by subtraction (MS(n) - MS(n-1)) for n = 3 or 4. We discuss the characterization of this method, including product ion arrival times, fragmentation efficiencies, and ion selectivity. We report accurate TOF mass spectra of background-subtracted MS3 for protonated molecules reserpine (m/z 609), bosentan (m/z 1552), and taxol (m/z 854).  相似文献   

16.
The design and performance of a new time-of-flight mass spectrometer is reported. The instrument combines the advantages of a pulsed drawout TOF analyzer with a liquid secondary ion source. Differences from commercially available pulsed TOF analyzers (Wiley/McLaren type) are discussed with regard to operation with ion desorption from a liquid matrix.  相似文献   

17.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

18.
The feasibility of ultra thin-layer chromatography atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry (UTLC-AP-MALDI-MS) has been studied in the analysis of small molecules. Because of a thinner adsorbent layer, the monolithic UTLC plates provide 10-100 times better sensitivity in MALDI analysis than conventional high performance thin-layer chromatography (HPTLC) plates. The limits of detection down to a low picomole range are demonstrated by UTLC-AP-MALDI-MS. Other advantages of UTLC over HPTLC include faster separations and lower solvent consumption. The performances of AP-MALDI-MS and vacuum MALDI-MS have been compared in the analysis of small drug molecules directly from the UTLC plates. The desorption from the irregular surface of UTLC plates with an external AP-MALDI ion source combined with an ion trap instrument provides clearly less variation in measurements of m/z values when compared with a vacuum MALDI-time-of-flight (TOF) instrument. The performance of the UTLC-AP-MALDI-MS method has been applied successfully to the purity analysis of synthesis products produced by solid-phase parallel synthesis method.  相似文献   

19.
The practicability of direct sampling time-of-flight mass spectrometers for routine technological analysis is considered. The discussed set incorporates two TOF instruments together covering analysis of solid, liquid, and gas samples without the need for time consuming sample preparation. Both an electron ionization reflectron TOF mass analyzer designed for the analysis of gas and liquid samples and a laser ionization axial electrostatic TOF mass analyzer designed for analysis of solid and powder samples use a single system for data acquisition, collection and processing. These instruments achieve ng/g range sensitivity and mass resolution exceeding 1000. Because of its compact design the system also can be realized as a mobile laboratory for on-site analysis. Prospects for applying the instruments to different technological applications are discussed. Received: 17 July 1997 / Revised: 28 November 1997 / Accepted: 22 December 1997  相似文献   

20.
The practicability of direct sampling time-of-flight mass spectrometers for routine technological analysis is considered. The discussed set incorporates two TOF instruments together covering analysis of solid, liquid, and gas samples without the need for time consuming sample preparation. Both an electron ionization reflectron TOF mass analyzer designed for the analysis of gas and liquid samples and a laser ionization axial electrostatic TOF mass analyzer designed for analysis of solid and powder samples use a single system for data acquisition, collection and processing. These instruments achieve ng/g range sensitivity and mass resolution exceeding 1000. Because of its compact design the system also can be realized as a mobile laboratory for on-site analysis. Prospects for applying the instruments to different technological applications are discussed. Received: 17 July 1997 / Revised: 28 November 1997 / Accepted: 22 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号