首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, the pozzolanic activity of natural and artificial pozzolan used for preparation of restoration mortars was evaluated. For this purpose, several pastes were prepared, by mixing two artificial pozzolans and a natural one with commercial hydrated lime, in different ratios. The pastes were cured in standard conditions (RH = 98%, T = 25 °C). The pozzolanic activity was evaluated by using simultaneous differential thermal and thermogravimetric analysis (DTA/TG) after curing for 3, 7, 14, 28 days. The obtained results revealed that the various lime/pozzolan pastes displayed different reaction kinetics and therefore the various pozzolans present different reactivity, in proportion to its mineralogical, physical and chemical characteristics.  相似文献   

2.
DTA/TG and X-ray investigations were carried out on different building composites in order to examine their relative hydration processes. The presence of lime, hemihydrate gypsum, ferosilicate, and some other wastes as leaner and hydrophobic additive in different proportions into composites provokes hydration reactions, leading to calcium silicate hydrate (CSH), ettringite and an intermediate phase formation with varying chemical composition of calcium, aluminum, silicon and sulfur. DTA curves indicate several transformations taking place between composites components, related to hydration of some phases. The content of ettringite component corresponds to the properties and it is used as an indicator for the possibility of industrial application. It is found out that gypsum based cementitious binders could be used as building material in the industry. The same time it is confirmed that the selected wastes could be considered as secondary raw materials.  相似文献   

3.
A lime-pozzolan cement was used to make pastes containing different quantities of MSW fly ash. After setting, the pastes were cured in water at room temperature from 1 h to 260 days. The hydration characteristics and the nature of the hydration products of the various pastes were studied by simultaneous TG/DSC thermal analysis and X-ray diffractometry. The MSW fly ash was found to induce a slowing of the hydration process in lime-pozzolan pastes, and after some days an evident acceleration of hydration reactions occurred. Sulphate and chloride in the MSW fly ash yield hydration products forming a cementitious matrix.The author is grateful to D. Calabrese for assistance with the thermal and XRD analyses.  相似文献   

4.
DTA/TG thermoanalytical investigations and X-ray diffractometry were carried out which demonstrate the effect of MSW fly ash on the hydration reactions of pozzolanic cement. The MSW fly ash has high content of calcium sulphate, alkali chlorides and heavy metals. During the first curing period the calcium aluminate reacts with the sulphate to form ettringite. In that period also the presence of syngenite is noted in the pastes. With the growth of the fly ash content of the mixture there is a lengthening of the period in which the hydration reactions of the calcium silicates are inhibited. Subsequently with the progress of hydration in the pastes the CSH phase develops and the formation of calcium chloroaluminate phase is observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Ceramic powder has been used as an artificial pozzolanic addition, in preparing pozzolanic mortars for the historic/traditional structures’ construction. In order to evaluate the pozzolanic activity of ceramic powder, several pastes were prepared, by mixing it with hydrated lime, in different ratios. The pastes were stored in standard conditions (RH=99±1%, T=25±1°C) and evaluated using thermal analysis (DTA/TG), X-ray diffraction (XRD), compressive strength tests and mercury intrusion porosimetry (MIP), in time. The obtained results revealed that the compounds formed were CSH and C4ACH11 (monocarboaluminate) after 270 days of curing. The calcium hydroxide consumption increases as the initial amount of the ceramic powder in the paste augments. The maximum strength development is obtained for ceramic powder/hydrated lime ratio 3:1.  相似文献   

6.
In order to evaluate the pozzolanic activity of metakaolin, several pastes were prepared, by mixing metakaolin with hydrated lime, in different ratios. The pastes were stored in standard conditions (RH=99±1%, T=25±1°C) and evaluated using thermal analysis (DTA/TG), X-ray diffraction (XRD), compressive strength tests and mercury intrusion porosimetry (MIP), in time. The obtained results revealed that the compounds formed are CSH, C2ASH8 and C4 11 while C4AH13 was not detected up to 270 days of curing. The calcium hydroxide consumption increases as the initial amount of the metakaolin in the paste augments. The maximum strength development is obtained for metakaolin/lime ratio:1.  相似文献   

7.
A thermogravimetric method has been developed and is suggested for both the qualitative and quantitative phase analyses of high-calcium lime and calcium speciation as well. Two complementary TG measurements are proved to be satisfactory for the determination of moisture, calcium oxide, calcium hydroxide and calcium carbonate contents as well as total mineral impurities in high-calcium limes: quicklime, hydrated lime and limestone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Two aged cement pastes (7 years) were studied for H2O and CO2 evolution, the combined amounts of which were measured by TG and identified by thermo-IR analysis. This indicated the presence of three forms of carbonates, which decomposed at different temperatures. The displacement with time of the evaporation of sorbed water to higher temperatures (500–700°C, TG, MS) shows the possibility of its incorporation into carbonate hydrates and/or hydroxy hydrates, postulated previously. The decomposition of all the hydration products needed a thermal energy increasing with ageing (increased temperature measured by TG). The carbonation process proceeded for 7 years in the weaker paste, whereas it terminated before 5 years in the stronger one. The CSH water content did not change with ageing, whereas that of portlandite was lowered, which though did not account for the increase in carbonate content (TG). Possibly some Ca2+ from the CSH gel was involved in this process. In the stronger paste the growth with time of organic matter was found (IR, TG/DTG).  相似文献   

9.
Natural pozzolans were used as pozzolanic cement in concrete mixtures to increase the long-term strength, the concrete durability, and other material properties of Portland cement many centuries ago. The most common pozzolan is the volcanic ash, a siliceous or aluminosiliceous material, which is highly vitreous, coming from volcanic eruptions. In the Greek territory, 39 reactive volcanoes have been recorded both in insular and in terrestrial areas. The reactivity of pozzolans, in the case of lime-based mortars, is attributed to their content in amorphous silica which reacts with Ca(OH)2 from lime, in environmental conditions, and forms C–S–H compounds responsible for the strength gain. Their use in building materials was diachronic. The significant properties of mortars containing pozzolans derive from the mechanism of its gradual strengthening attributed to the reaction of silicates with lime to form secondary cementitious phases which increase the durability and the dense structure of the mortars. In the present paper, two natural pozzolans from Greece are analyzed in order to record their morphological and analytical microstructure as well as their thermal and physical properties. The results revealed that the pozzolans tested, are materials of high quality and can be used for the production of compatible repair mortars. Also, valuable criteria could be instituted for the selection of reactive pozzolans which could be used for conservation purposes. Among others, crucial parameters for compatibility between old mortars and new ones are the surface features (color, texture, and roughness), the composition (type of binder, granulometry of aggregate), and the pore size distribution.  相似文献   

10.
The surface adsorption of calcium hydroxide onto kaolin and metakaolin was investigated by monitoring with atomic emission spectroscopy and pH measurements the amounts of ions left in solution after exposing clays to calcium hydroxide solutions of various concentrations. Both clays adsorb calcium and hydroxyl ions but differently. Kaolin adsorbs calcium hydroxide not only at the edges of the clay particles but also onto the basal faces. The adsorbed hydrated calcium ions form a layer on the clay particle surfaces, preventing further dissolution of the clay mineral platelet. Metakaolin shows high pozzolanic activity, which provides the quick formation of hydrated phases at the interfaces between metakaolin and lime solutions. The nature of the hydration products has been investigated using X-ray diffraction (XRD) and differential thermal analysis (DTA). The most important hydrated phases like CSH (hydrated calcium silicate) and C2ASH8 (gehlenite) have been identified.  相似文献   

11.
The present research is concerning the characterization of FDR (fuel derived from residues) fly ash and mixtures with lime/brick hydraulic binder by DTA/TG/DTG thermo-analysis, X-ray diffractometry and chemical analysis. The use of hydraulic binder obtained from building brick rejects, which is less expensive than the usual solidifiers such as cementitious binder and silicates, allows us to reutilize, in the meantime, this wreckage material, to the advantage of environmental sustainability. Fly ash samples investigated in the present study were separated in a thermo-incineration plant. Mineralogical DTA/TG/DTG and XRD investigations reveal the presence of different phases as well as chemical analysis shows a moderate concentration of heavy metals and high content of chloride and sulphate. Results obtained from leaching tests with water carried out on hardened pastes containing fly ash lead to interesting results, which highlight behaviour to the release of contaminants. The whole of the results obtained in the present study make it possible to regard the objective of disposing such hardened materials in inert waste landfill sites as achievable.  相似文献   

12.
This paper represents a laboratory study on the acid resistance of hardened ordinary Portland cement (OPC) and blended OPC pastes at two different curing temperatures. The blended materials used are rice husk ash (RHA) and cement kiln dust (CKD). The blended cement pastes were prepared using a water/solid (W/S) ratio of 0.3. The effects of immersion in deionized water (pH 7) and sulfuric acid solutions (pH 1, 2 and 3) at two temperatures (20 and 50 °C) on the compressive strength and phase composition of the various hardened blended cement pastes were studied. The results of compressive strength revealed that the increase of curing temperature from 20 to 50 °C resulted in increase the reduction of compressive strength due to acid attack up 2 months, but the resistance to sulfuric acid attack increases after that time due to the formation of crystalline calcium silicate hydrates (CSH) which have higher resistance to acid attack than the amorphous CSH formed at the early ages of hydration. The presence of RHA and CKD improves the resistance to sulfuric acid attack at both curing conditions. From the results of X-ray diffraction analysis and differential scanning calorimetric technique curves, the main hydration products identified are CSH, portlandite, and calcium sulfoaluminate hydrates.  相似文献   

13.
Two sets of hardened cement pastes were prepared by (a) impregnation with polymethyl methacrylate and polystyrene or (b) admixing with water-soluble condensates(superplasticizers) such as Na-phenol sulphonate formaldehyde, Na-polystyrene sulphonateand Na-β-naphthol sulphonate formaldehyde. The pastes were hydrated for 180 days. The results of nitrogen adsorption indicated that polymer impregnation strongly affected the specific surface areas and the total pore volumes of the hardened cement pastes. XRD analysis, DTA and TG demonstrated (a) the formation of new phases as a result of the interactions involving the polymer within the pore system of the hydrated products of the impregnated cement pastes, and (b) no change in the phase composition of the hydrated products of the cement pastes admixed with superplasticizers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Although gypsum belongs to the low-energy environmentally friendly binders, its wider applications in building constructions are limited due to the negative effect of moisture on its mechanical properties. When calcined gypsum (CaSO4·1/2H2O) transforms into its hydrated form (CaSO4·2H2O), it is partially soluble in water and it has a relatively low strength. This problem can be resolved when gypsum is used as a part of binary or ternary binders. In this paper, a system consisting of calcined gypsum, lime, and silica fume is presented as a functional solution for a wider utilization of gypsum in wet environments. For this purpose, the newly designed materials were stored in different environments (laboratory conditions in air or water) up to 182 days. The effect of silica fume on the hydration process and the growth of the main products is evaluated by using differential scanning calorimetry and thermogravimetry in the temperature range from 25 to 1000 °C with a heating rate of 5 °C min?1 in an argon atmosphere. The carbonation level of studied materials is also evaluated. Besides this, the information about the thermal stability of studied materials is provided. These results are supported by evolved gas analysis, X-ray diffraction, and scanning electron microscopy. The basic physical and mechanical properties are determined to provide more detailed information about the behavior of the designed materials under various conditions at selected days of hydration. The addition of silica fume to the gypsum–lime system activates the pozzolanic reaction of the analyzed pastes, which is proved by the presence of the CSH phase and by the consumption of portlandite in the mixtures. Wet environment speeds up the hydration processes and prevents samples from carbonation.  相似文献   

15.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

16.
Pozzolans play an important role in the industry of cement and concrete. They increase the mechanical strength of cement matrices and can be used to decrease the amount of cement in concrete mixtures, thus decreasing the final economic and environmental cost of production; also, as some of them are byproducts of industrial processes (such as silica fume and fly ash) and their use can be seen as a solution for some residues, that otherwise would be disposed as a waste. Pozzolans fixate the Ca(OH)2 generated during cement’s hydration reactions to form calcium silicate hydrates (C–S–H), calcium aluminate hydrates (C–A–H), or calcium aluminosilicate hydrates (C–A–S–H), depending on the nature of the pozzolan. Traditionally, the pozzolanic activity is identified using the Ca(OH)2 fixation percentage which is quantified by thermogravimetric (TG) analysis, using the mass loss due to the Ca(OH)2 dehydroxylation around 500 °C. An alternative method to identify pozzolanic activity at lower temperatures using a standard issue moisture analyzer (MA) is presented in this paper, using the mass loss due to hydrate’s dehydration generated by pozzolans in the pozzolanic reaction. Samples of Ca(OH)2 blended with different pozzolans were prepared and tested at different hydration ages. Using TG analysis and an MA, a good correlation was found between the total mass loss of the same sample, using the two methods at the same temperature. It was concluded that the MA method can be considered a less expensive and less time-consuming alternative to identify pozzolanic activity of siliceous or aluminosiliceous materials.  相似文献   

17.
This paper examines the solidification/stabilisation treatment of two fly ash samples from a Municipal Solid Waste (MSW) incineration plant using a lime-pozzolan binder. The two examined fly ash samples were characterised by a high chloride and sulphate content and by a significant concentration of heavy metals. The effective development of hydrate phases during hydration of hydraulic lime-fly ash mixtures allows us to stabilise numerous pollutants in hardened pastes. The release of pollutants into the leachants is limited and decreases with the curing period of the pastes.  相似文献   

18.
This research reports on the effects of including natural pozzolans in two Portland cements with different mineralogical compositions, with and without excess gypsum at amounts equivalent to 7.0% SO3. The main analytical techniques used to study these effects were: the amount of water needed to make a paste of normal consistency, the 2-day Frattini pozzolanicity test and conduction calorimetry. The results obtained showed that these natural pozzolans caused contradictory (accelerating and retarding) effects on the rheology of the resulting cements, depending on the mineralogical composition of the respective Portland clinkers as well as the reactive chemical composition of the pozzolans, in particular their reactive alumina content (Al2O3 r−). The addition of gypsum also caused acceleration and delays in the calorimetric evolution of the resulting pastes, which proved to be heavily dependent upon the more or less aluminic chemical character of the natural pozzolans studied. This, in turn, was conditioned by the higher or lower Al2O3 r− content (for the SiO2 r− content was of a very similar order of magnitude in all three pozzolans analyzed). The Al2O3 r− content was likewise responsible for paste behaviour in the afore-mentioned trials and analyses, and the pozzolanic activity exhibited by the compound was found to be more specific than generic, indirectly stimulating C3A hydration more intensely and rapidly than C3S hydration in PC1, one of the two Portland cements used. Indeed, when these natural pozzolans exhibited such prior pozzolanic activity in the second cement studied, PC2, the hydration of its 79.5% of C3S was not indirectly stimulated to the same degree; rather, the contrary effect was observed, i.e., this cement was physically diluted by the three pozzolans. Pozzolan O stimulated hydration directly and non-directly more than indirectly, while pozzolan C acted conversely, and A exhibited varying combinations of the two patterns. The physical state of the reactive alumina, Al2O3 r−, in these three natural pozzolans, must be more amorphous than vitreous, i.e., resembling metakaolin more than fly ash in this regard. That notwithstanding, the reactive alumina content in each pozzolan must have conditioned the water/cementitious material ratio obtained for the respective blends with both types of Portland cement (a finding that could be used in future for speedy, simple, reliable and economical characterization), as well as their specific pozzolanicity developed and the rate and total heat of hydration generated by such blended cements.  相似文献   

19.
Thermogravimetry (TG) and derivative thermogravimetry (DTG) were used to analyze the early stages of hydration of a high-initial strength and sulphate resistant Portland cement (HS SR PC) within the first 24 h of setting. The water/cement (W/C) mass ratios used to prepare the pastes were 0.35, 0.45, and 0.55. The hydration behavior of the pastes was analyzed through TG and DTG curves obtained after different hydration times on calcined cement mass basis to have a same composition basis to compare the data. The influence of the W/C ratio on the kinetics of the hydration process was done through the quantitative analysis of the combined water of the main hydration products formed in each case. TG and DTG curves data calculated on calcined mass basis of all the results were converted to initial cement mass basis to have an easier way to analyze the influence of the W/C ratio on the free and combined water of the different main hydrated phases. The gypsum content of the pastes was totally consumed in 8 h for all cases. A significant part of the hydration process occurs within the first 14 h of setting and at 24 h the highest hydration degree, indicated by the respective content of formed calcium hydroxide, occurs in the case of the highest initial water content of the paste.  相似文献   

20.
The so-called DSP (Densified Systems containing homogenously arranged Particles) systems represent a high-performance class of inorganic binders. The hydration and hardening processes of some DSP systems, based on calcium silicates (C3S and C2S) or Portland cement/clinker with silica fume additions, were assessed, in this paper, using the thermogravimetry (TG) and differential thermal analysis (DTA). These data permit a qualitative and quantitative study of the formed hydrates as well as the estimation of hydration process kinetics. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号