首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality and signal to noise ratio of a J-based HETCOR performed on a standard MAS probe have been compared with a gradient enhanced HSQC performed on a HR-MAS probe at 500 MHz. The sample selected was cholesterol, inserted at 30 mol% in acyl chain deuterated phospholipids (DMPC-d54), at a temperature where the bilayer is in a liquid crystalline phase (310 K). It is representative of any rigid molecule undergoing fast axial diffusion in a bilayer as the main movement. After optimization of the spinning rate and carbon decoupling conditions, it is shown that the ge-HSQC/MAS approach is far superior to the more conventional J-HETCOR/MAS in terms of signal to noise ratio, and that it allows the detection of all the natural abundance cross peaks of cholesterol in a membrane environment. Clear differences between the 1H and 13C chemical shifts of cholesterol in a membrane and in chloroform solution were thus revealed.  相似文献   

2.
Nitrogen-14 (spin I = 1) has always been a nucleus difficult to observe in solid-state NMR and until recently its observation was restricted to one-dimensional (1D) spectra. We present here the first 3D 1H–13C–14N NMR correlation spectrum. This spectrum was acquired on a test sample l-histidine·HCl·H2O using a recently developed technique, which consists in indirectly observing 14N nuclei via dipolar recoupling with an HMQC-type experiment.  相似文献   

3.
Membrane topology changes introduced by the association of biologically pertinent molecules with membranes were analyzed utilizing the (1)H-(13)C heteronuclear dipolar solid-state NMR spectroscopy technique (SAMMY) on magnetically aligned phospholipid bilayers (bicelles). The phospholipids (1)H-(13)C dipolar coupling profiles lipid motions at the headgroup, glycerol backbone, and the acyl chain region. The transmembrane segment of phospholamban, the antimicrobial peptide (KIGAKI)(3) and cholesterol were incorporated into the bicelles, respectively. The lipids (1)H-(13)C dipolar coupling profiles exhibit different shifts in the dipolar coupling contour positions upon the addition of these molecules, demonstrating a variety of interaction mechanisms exist between the biological molecules and the membranes. The membrane topology changes revealed by the SAMMY pulse sequence provide a complete screening method for analyzing how these biologically active molecules interact with the membrane.  相似文献   

4.
本文提出了间接测量1H-13CT1和T2的新方法,这些方法能用于测量1H谱不能很好分辨的分子。并对直接测量和间接测量结果进行分析比较。  相似文献   

5.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarization transfer from the abundant protons to 13C. In a rotor-synchronized variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring multiple-quantum spinning-sideband patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique are demonstrated by measurements on crystalline L-tyrosine hydrochloride salt.  相似文献   

6.
A detailed theoretical and experimental analysis of the artifacts induced by homonuclear band-selective decoupling during CT frequency labeling is presented. The effects are discussed in the context of an amino-acid-type editing filter implemented in (1)H-(13)C CT-HSQC experiments of methyl groups in proteins. It is shown that both Bloch-Siegert shifts and modulation sidebands are efficiently suppressed by using additional off-resonance decoupling as proposed by Zhang and Gorenstein [J. Magn. Reson. 132 (1998) 81], and appropriate adjustment of a set of pulse sequence parameters. The theoretical predictions are confirmed by experiments performed on (13)C-labeled protein samples, yielding artifact-free amino-acid-type edited methyl spectra.  相似文献   

7.
High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on (1)H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a (13)C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for (13)C DOSY perform diffusion encoding with (1)H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with (13)C in a spin echo experiment such as the DEPTSE pulse sequence described here.  相似文献   

8.
The (1)H-(13)C solid-state NMR heteronuclear correlation (HETCOR) experiment is demonstrated to provide shift assignments in certain powders that have two or more structurally independent molecules in the unit cell (i.e. multiple molecules per asymmetric unit). Although this class of solids is often difficult to characterize using other methods, HETCOR provides both the conventional assignment of shifts to molecular positions and associates many resonances with specific molecules in the asymmetric unit. Such assignments facilitate conformational characterization of the individual molecules of the asymmetric unit and the first such characterization solely from solid-state NMR data is described. HETCOR offers advantages in sensitivity over prior methods that assign resonances in the asymmetric unit by (13)C-(13)C correlations and therefore allows shorter average analysis times in natural abundance materials. The (1)H-(13)C analysis is demonstrated first on materials with known shift assignments from INADEQUATE data (santonin and Ca(OAc)(2) phase I) to verify the technique and subsequently is extended to a pair of unknown solids: (+)-catechin and Ca(OAc)(2) phase II. Sufficient sensitivity and resolution is achieved in the spectra to provide assignments to one of the specific molecules of the asymmetric unit at over 54% of the sites.  相似文献   

9.
Phospholipid bilayers with over 20% cholesterol can form a liquid-ordered (l(o)) phase, which can be found in lateral domains, called rafts, in biomembranes. We show here that high-resolution (13)C and (1)H solid-state NMR are well suited to explore this phase, intermediate between gel and fluid. This approach can be applied to artificial or natural membranes, with no isotopic enrichment and with the help of magic-angle spinning (MAS), taking advantage of the high resolution and sensitivity of these nuclei. The sensitivity of magnetization transfer schemes to different lipid states has allowed us here to discriminate between various phases. We show that the phase composed of unsaturated phospholipids and cholesterol differs, in terms of lipid dynamics, both from the previously described l(o) phase and from the liquid-disordered phase.  相似文献   

10.
11.
Heteronuclear spin echoes having the spin coherence transferred by means of cross-polarization (CP) under Hartmann-Hahn condition are reported. The particular characteristic of heteronuclear spin echoes is that the dephasing and refocusing processes take place within different nuclear species. Originally, they were demonstrated using the heteronuclear scalar interaction to transfer the spin coherence between the two spin systems. In this work, it is shown that spin coherence transferred by CP can also lead to the formation of heteronuclear spin echoes. A semiclassical formalism was used to explain the mechanism of generation of the spin echoes. These spin echoes were observed so far in elastomeric materials.  相似文献   

12.
Improved methods for three-dimensional TROSY-Type HCCH correlation involving protons of negligible CSA are presented. The TROSY approach differs from the conventional approach of heteronuclear decoupling in evolution and detection periods by not mixing fast and slowly relaxing coherences and usually suppressing the former. Pervushin et al. (J. Am. Chem. Soc. 120, 6394-6400 (1998)) have proposed a 3D TROSY-type HCCH experiment where the TROSY approach is applied only in one of the (13)C dimensions. A new pulse sequence applying the TROSY approach in both indirect dimensions is advantageous when the TROSY effect of the carbons is large or when a relatively high resolution is required. For lower resolutions or moderate TROSY effects we show that it is possible to combine the best of both worlds, namely to suppress heteronuclear couplings without mixing fast and slowly relaxing coherences while at the same time superimpose the two components and thus have both contribute to the detected signal. That is possible using the novel technique of Spin-State-Selective Time-Proportional Phase Incrementation (S(3) TPPI). The new 3D S(3) TPPI TROSY HCCH method is demonstrated on a (13)C,(15)N-labeled protein sample, RAP 18-112 (N-terminal domain of alpha(2)-macroglobulin receptor associated protein), at 750 MHz and average sensitivity enhancements of 10% are obtained for the cross peaks in comparison to methods based on conventional decoupling on one of the carbons or on TROSY on both carbons.  相似文献   

13.
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.  相似文献   

14.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both 13C homonuclear decoupling and 1H-15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H-15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

15.
Two-dimensional (1)H-(13)C INEPT MAS NMR experiments utilizing a (1)H-(1)H magnetization exchange mixing period are presented for characterization of lipid systems. The introduction of the exchange period allows for structural information to be obtained via (1)H-(1)H dipolar couplings but with (13)C chemical shift resolution. It is shown that utilizing a RFDR recoupling sequence with short mixing times in place of the more standard NOE cross-relaxation for magnetization exchange during the mixing period allowed for the identification and separation of close (1)H-(1)H dipolar contacts versus longer-range inter-molecular (1)H-(1)H dipolar cross-relaxation. These 2D INEPT experiments were used to address both intra- and inter-molecular contacts in lipid and lipid/cholesterol mixtures.  相似文献   

16.
Abstract

We developed a high-pressure high-resolution probe for NMR experiments on biological systems which enabled us to study the phase behaviour of model biomembranes by 1D and 2D NMR experiments at temperatures up to 65°C and at pressures up to 3000 bar.  相似文献   

17.
The presence of t(1) noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t(1) noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t(1) noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.  相似文献   

18.
The stretching fundamental bands of the isotopically substituted acetylene 13C2D2 have been recorded and analysed. The Raman spectra of the Q branch of v 1 and v 2, Σ+ g + g bands, have been recorded with an instrumental resolution of about 3.0 x 10?3 cm?1 using inverse Raman spectroscopy. The infrared spectrum has been recorded in the region between 2350 cm?1 and 2500 cm?1 with an instrumental resolution of 4.0 x 10?3 cm?1. Transitions belonging to the v 3, Σ+ u + g , fundamental band have been identified and assigned. The vibrational energies and the rotational and centrifugal distortion constants of the excited states of all the observed transitions have been determined. The molecular parameters obtained reproduce the assigned wave-numbers with a standard deviation of the same order of magnitude as the experimental uncertainty.  相似文献   

19.
报道了一种热转印色带用黄染料的1H、13C NMR , 应用1H NMR、13C NMR、定量碳谱、DEPT、1H-1H COSY、HMQC、HMBC等确定了其在氘代氯仿中的分子结构, 并对全部谱峰进行了归属, 探索了黄染料在氘代氯仿中的结构对13C、1H NMR谱图化学位移及谱峰裂分的影响.   相似文献   

20.
The optimization of coherence-transfer pulse-sequence elements (CTEs) is the most challenging step in the construction of heteronuclear correlation NMR experiments achieving sensitivity close to its theoretical maximum (in the absence of relaxation) in the shortest possible experimental time and featuring active suppression of undesired signals. As reported in the present article, this complex optimization problem in a space of high dimensionality turns out to be numerically tractable. Based on the application of molecular dynamics in the space of pulse-sequence variables, a general method is proposed for constructing optimized CTEs capable of transferring an arbitrary (generally non-Hermitian) spin operator encoding the chemical shift of heteronuclear spins to an arbitrary spin operator suitable for signal detection. The CTEs constructed in this way are evaluated against benchmarks provided by the theoretical unitary bound for coherence transfer and the minimal required transfer time (when available). This approach is used to design a set of NMR experiments enabling direct and selective observation of individual (1)H-transitions in (13)C-labeled methyl spin systems close to optimal sensitivity and using a minimal number of spectra. As an illustrative application of the method, optimized CTEs are used to quantitatively measure (1)H-(1)H and (1)H-(13)C residual dipolar couplings (RDCs) in a 17 kDa protein weakly aligned by means of Pf1 phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号