首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The varying degrees of protonation of N-(phosphonomethyl)glycine (PMG, glyphosate) were investigated with infrared (IR) spectroscopy and ab initio frequency calculations. The zwitterionic nature of PMG in solution was confirmed, and intramolecular hydrogen bonding was identified. Successive protonation of the PMG molecule follows the order amine, phosphonate, carboxylate. Intramolecular hydrogen bonding is indicated to exist at all stages of protonation: between both RCO(2-) and RNH(2)(+) and RPO(3)(2-) and RNH(2+) in HL(2)(-) (where L represents the ligand PMG); between RCO(2)(-) and RNH(2)(+) in H(2)L(-); predominantly between RPO(3)(2-) and RNH(2)(+) in H(3)L. There are strong indications that the zwitterion is intact throughout the pH range investigated. Results from IR and extended X-ray absorption fine structure (EXAFS) spectroscopies provide new evidence for structures of N-(phosphonomethyl)glycinecopper(II) complexes. The structures of 1:1 complexes, CuL(-) and CuHL, are essentially the same, differing only in protonation of the phosphonate group. Copper(II) lies at the center of a Jahn-Teller distorted octahedron with all three donor groups (amine, carboxylate, phosphonate) of PMG chelating with copper(II) to form two five-membered chelate rings oriented in the equatorial plane. EXAFS indicates that oxygen (most likely a water molecule) is a fourth ligand, which would thus occupy the fourth corner in the equatorial plane of the elongated octahedron. CuL(2)(4-) most probably forms an isomeric mixture in solution, and there are indications that this mixture is dominated by complexes where two PMG ligands are bound to copper(II) via equatorial and axial positions, with both phosphonate and carboxylate donor groups responsible for chelation at axial positions.  相似文献   

2.
The co-adsorption of Cd(II) and glyphosate (N-(phosphonomethyl)glycine, PMG) at the manganite (gamma-MnOOH) surface has been studied in the pH range 6-10 at 25 degrees C and with 0.1 M Na(Cl) as ionic medium. Batch adsorption experiments, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used for the quantitative analysis and the determination of the molecular structure of the surface complexes. The adsorption of Cd(II) and PMG in the ternary Cd(II)-PMG-manganite system was compared with the adsorption in the binary Cd(II)-manganite and PMG-manganite systems. The formation of three inner sphere surface complexes was observed, a ternary Cd(II)-PMG-manganite complex, a binary Cd(II)-manganite complex and a binary PMG-manganite complex. The surface concentration of the ternary complex and the Cd(II)-manganite complex was more or less constant throughout the pH range studied. However, the surface concentration of the binary PMG-manganite complex decreased with increasing pH. The major part of the binary PMG-surface complex was protonated. The ternary surface complex displayed a type B structure (Cd(II)-PMG-manganite). The average Cd-Mn distance obtained from EXAFS (3.26 A) indicates that the binary and ternary Cd(II)-surface complexes are formed by edge-sharing of Mn and Cd octahedra on the (010) plane of the manganite crystals.  相似文献   

3.
Common complexing ligands such as chloride and sulfate can significantly impact the sorption of Hg(II) to particle surfaces in aqueous environmental systems. To examine the effects of these ligands on Hg(II) sorption to mineral sorbents, macroscopic Hg(II) uptake measurements were conducted at pH 6 and [Hg](i)=0.5 mM on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) in the presence of chloride or sulfate, and the sorption products were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of chloride resulted in reduced uptake of Hg(II) on all three substrates over the Cl(-) concentration ([Cl(-)]) range 10(-5) to 10(-2) M, lowering Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.42 to 0.07 micromol/m(2), 0.06 to 0.006 micromol/m(2), and 0.55 to 0.39 micromol/m(2) ([Cl(-)]=10(-5) to 10(-3) M only), respectively. This reduction in Hg(II) uptake is primarily a result of the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution, limiting the amount of free Hg(II) available to sorb. At higher [Cl(-)] beam reduction of Hg(II) to Hg(I) was observed, resulting in the possible formation of aqueous Hg(2)Cl(2) species and the precipitation of calomel, Hg(2)Cl(2(s)). The presence of sulfate caused enhanced Hg(II) uptake over the sulfate concentration ([SO(4)(2-)]) range 10(-5) to 0.9 M, increasing Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.39 to 0.45 micromol/m(2), 0.11 to 0.38 micromol/m(2), and 0.36 to 3.33 micromol/m(2), respectively. This effect is likely due to the direct sorption or accumulation of sulfate ions at the substrate interface, effectively reducing the positive surface charge that electrostatically inhibits Hg(II) sorption. Spectroscopic evidence for ternary surface complexation was observed in isolated cases, specifically in the Hg-goethite-sulfate system at high [SO(4)(2-)] and in the Hg-goethite-chloride system.  相似文献   

4.
The study of mercury sorption products in model systems using appropriate in situ molecular-scale probes can provide detailed information on the modes of sorption at mineral/water interfaces. Such studies are essential for assessing the influence of sorption processes on the transport of Hg in contaminated natural systems. Macroscopic uptake of Hg(II) on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) as a function of pH has been combined with Hg L(III)-edge EXAFS spectroscopy, FTIR spectroscopy, and bond valence analysis of possible sorption products to provide this type of information. Macroscopic uptake measurements show that Hg(II) sorbs strongly to fine-grained powders of synthetic goethite (Hg sorption density Gamma=0.39-0.42 micromol/m(2)) and bayerite (Gamma=0.39-0.44 micromol/m(2)), while sorbing more weakly to gamma-alumina (Gamma=0.04-0.13 micromol/m(2)). EXAFS spectroscopy on the sorption samples shows that the dominant mode of Hg sorption on these phases is as monodentate and bidentate inner-sphere complexes. The mode of Hg(II) sorption to goethite was similar over the pH range 4.3-7.4, as were those of Hg(II) sorption to bayerite over the pH range 5.1-7.9. Conversion of the gamma-Al(2)O(3) sorbent to a bayerite-like phase in addition to the apparent reduction of Hg(II) to Hg(I), possibly by photoreduction during EXAFS data collection, resulted in enhanced Hg uptake from pH 5.2-7.8 and changes in the modes of sorption that correlate with the formation of the bayerite-like phase. Bond valence calculations are consistent with the sorption modes proposed from EXAFS analysis. EXAFS analysis of Hg(II) sorption products on a natural Fe oxyhydroxide precipitate and Al/Si-bearing flocculent material showed sorption products and modes of surface attachment similar to those for the model substrates, indicating that the model substrates are useful surrogates for the natural sediments.  相似文献   

5.
The co-sorption reaction products of arsenate (As(V)) and copper (Cu(II)) on goethite (alpha-FeOOH) and natro-jarosite (Na(3)Fe(3)(SO(4))(2)(OH)(6)) were investigated with extended X-ray absorption fine structure (EXAFS) spectroscopy to determine if Cu(II) and As(V) would form precipitates or compete with each other for surface sites. The reaction products were prepared by mixing 250 microM Cu(SO(4)) with 10, 25, or 50 microM Na(2)HAsO(4) at pH 5.65 and allowing the mixture to react in 10 m(2) L(-1) goethite or jarosite suspensions for 12 days. In addition, EXAFS data of Cu(SO(4)) and As(V) sorbed on goethite and jarosite were collected as control species. All reaction conditions were under-saturated with respect to common copper bearing minerals: tenorite (CuO), brochantite (Cu(4)(OH)(6)SO(4)), and hydrated clinoclase (Cu(3)(AsO(4))(2)2H(2)O). The extents of the As(V) and Cu(II) surface adsorption reactions showed a strong competitive effect from Cu(II) on As(V) adsorption for a nominal Cu:As mole-ratio of 25:1. With increasing nominal As(V) concentration, As(V) sorption on goethite and jarosite increased without diminishing the amount of Cu(II) sorption. In the absence of either co-sorbate, As(V) and Cu(II) formed the expected surface adsorption species, i.e., bidentate binuclear and edge-sharing surface complexes, consistent with previously published results. In each other's presence, the local bonding environments of As(V) and Cu(II) showed that the co-sorbates form a precipitate on the goethite and jarosite surface at nominal concentrations of 10:1 and 5:1. At nominal Cu:As mole-ratios of 25:1, Cu(II) did not form significantly different surface complexes on goethite or jarosite from those in the absence of As(V), however, As K-edge EXAFS results distinctly showed Cu(II) atoms in As(V)'s local bonding environment on the goethite surface. The structures of the two precipitates were different and depended on the anion-layer structure and possibly the presence of structural oxyanions in the case of jarosite. On goethite, the copper-arsenate precipitate was similar to hydrated clinoclase, while on jarosite, a euchroite-like precipitate (Cu(2)[AsO(4)](OH)3H(2)O, P 2(1)2(1)2(1)) had formed. Despite under-saturated solution conditions, the formation of these precipitates may have occurred due to a seed-formation effect from densely surface adsorbed Cu(II) and As(V) for which the "new" saturation index was significantly lower than homogeneous values would otherwise suggest. Synergistic reactions between two co-sorbates of fundamentally different surface adsorption behaviour can thus be achieved if the number of available sites for surface adsorption is limited.  相似文献   

6.
Cu(II)-氨基酸-核苷酸三元配合物的合成和表征   总被引:4,自引:0,他引:4  
邵昌平  张凡  郭和夫 《化学学报》1993,51(10):973-977
合成和表征Na~2[Cu(L-Ala)~2(5'-GMP)].2H~2O、Na~2[Cu(L-Ala)~2(5'-IMP)].6H~2O、Na~2[Cu(L-His)(5'-GMP)Cl~2^2.2H~2O和Na~2[Cu(L-His)(5'-IMP)Cl~2].H~2O四个新的三元配合物, 其中两个L-Ala分子通过羧基O和α-氨基N与Cu(II)成反式配位, 一个L-His分子通过羧基O和咪唑环上的N与Cu(II)配位; 一个5'-GMP或5'-IMP分子嘌呤环上的N(7)与Cu(II)配位; 5'-GMP的磷酸根上可能存在强氢键, 而5'-IMP的磷酸根上不存在强氢键; 在含L-Ala三元配合物中, 5'-GMP的C(6)=0可能参与配位或形成强氢键, 而5'-IMP的C(6)=0不参与配位或形成配位或形成强氢键; 在含L-His三元配合物中, 5'-IMP的C(6)=0的表现则相反。  相似文献   

7.
Aizawa S  Kodama S 《Electrophoresis》2012,33(3):523-527
The mechanism of change in the enantiomer migration order (EMO) of tartarate on ligand exchange CE with Cu(II)- and Ni(II)-D-quinic acid systems was investigated thoroughly by circular dichroism (CD) spectropolarimetry. The (13) C NMR spectra of solutions containing D-quinate (pH 5.0) with Cu(II) or Ni(II) revealed the coordination of carboxylate and hydroxyl groups on D-quinate. The D-quinic acid concentration dependence of the CD spectra at a fixed Cu(II) concentration at pH 5.0 indicates that the 1:1, 1:2 and 1:3 Cu(II)-D-quinate complexes were formed with an increase in the concentration of D-quinic acid. The CD spectral behavior revealed that D-tartarate is selectively coordinated to the 1:1 complex to give the 1:1:1 Cu(II)-D-quinate-D-tartarate ternary complex while L-tartarate is selectively bound to the 1:2 and 1:3 complexes to form the 1:2:1 ternary complex. In the Ni(II)-D-quinic acid system, it became apparent that the 1:2 Ni(II)-D-quinate complex is mainly formed in the wide range of D-quinic acid concentration at pH 5.0 and D-tartarate is selectively coordinated to the 1:2 complex to form the 1:2:1 ternary complex. The change in EMO of tartarate on ligand exchange CE was explainable by the change in coordination selectivity for D- and L-tartarates in the Cu(II)- and Ni(II)-D-quinic acid systems depending on the compositions of the complexes formed in BGE.  相似文献   

8.
The adsorption of Ga(III) at the water-alpha-FeOOH (goethite) interface has been investigated by means of quantitative adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. Under the conditions studied, pH range 3-11 and surface coverages of 0.9-3.2 micromol/m2, Ga(III) was found to adsorb strongly to alpha-FeOOH, and the surface species were more resistant toward hydrolysis and formation of soluble Ga(OH)4- than either solid gallium hydroxides or soluble polynuclear complexes. The EXAFS measurements revealed the presence of octahedral Ga(III) complexes at the water-alpha-FeOOH interface, with practically no structural variations as a function of pH or total gallium concentration. Analysis of the first coordination shell required an anharmonic model indicating a distorted geometry of the GaO6 octahedra, with mean Ga-O distances at 1.96-1.98 angstroms. A method based on the continuous Cauchy wavelet transforms (CCWT) was used to identify backscattering atoms in the higher coordination shells. This analysis indicated predominately Fe backscattering, and the quantitative data fitting resulted in three Ga-Fe paths at 3.05, 3.2, and 3.55 angstroms, which correspond to two edge-sharing and one corner-sharing linkage, respectively. The collective results from EXAFS spectroscopy showed that Ga(III) adsorbs to Fe equivalent sites at the surface alpha-FeOOH as an extension of the rows of Fe octahedra in the bulk structure. This interpretation was further corroborated by a Ga-Fe-Fe multiple scattering path at 6.13 angstroms. The quantitative adsorption and proton data were modeled using a surface complexation formalism based on a 1 pK(a) constant capacitance model. In agreement with the EXAFS results, the model obtained included one predominating surface complex with the stoichiometry [triple bond]FeOGa(OH)2(-0.5) and the stability constant log beta(intr.) = -2.55 +/- 0.04 ([triple bond]FeOH(-0.5) + Ga3+ + 2H2O <--> [triple bond]FeOGa(OH)2(-0.5) + 3H+).  相似文献   

9.
The local structure of Zn(II) adsorbed at the water-manganite (gamma-MnOOH) interface has been investigated by extended X-ray absorption fine structure (EXAFS) spectroscopy. Adsorption experiments were carried out within the pH range 6.17-9.87 and surface coverages of 0.9 to 9.7 μmol/m(2)cZn(II) coordination was observed to change from six to four as pH was increased. This was indicated by a change in Zn-O distance from 2.04 to 1.96 ? and by a decrease in the obtained coordination numbers. Two higher shells were detected at about 3.08 and 3.33 ?, at all pH values and surface coverage investigated. As the backscattering phase and amplitude functions of Mn and Zn are similar, we used structural and chemical considerations to assign the backscattering at 3.08 ? to Mn neighbors, and the one at 3.33 ? to Zn atoms. Indeed the size of the Zn polyhedra, especially of ZnO(4), does not quite match the structure of the manganite surface. We conclude that Zn(II) forms multinuclear hydroxo-complexes or a zinc hydroxide phase at the surface, as it might be easier for an additional Zn(II) to bond to an already sorbed Zn. These results were compared to our previous EXAFS study of Cd(II) adsorption onto manganite, where mononuclear inner-sphere complexes bound to the surface via edges were found. Copyright 2000 Academic Press.  相似文献   

10.
Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form. These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility.  相似文献   

11.
The sorption speciation of Ni(II) on Ca-montmorillonite was evaluated using a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and modeling. The pH and temperature at the aqueous-montmorillonite interface affects both the extent of Ni(II) sorption as well as the local atomic structure of the adsorbed Ni(II) ions. At 0.001 mol L(-1) Ca(NO(3))(2) and low pH, the study reveals that the majority of Ni(II) is adsorbed in the interlayers of Ca-montmorillonite coordinated by six water molecules in an octahedron as an outer-sphere complex. At higher pH, inner-sphere surface complexes are formed. The Ni-Si/Al distances (R(Ni-Al) = 3.00 ?, R(Ni-Si1) = 3.10 ? and R(Ni-Si2) = 3.26 ?) determined by EXAFS confirm the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5 and 8.5. At pH 10.0, the Ni-Ni/Si distances (R(Ni-Ni) = 3.07 ? and R(Ni-Si) = 3.26 ?) indicates the formation of Ni-phyllosilicate precipitates. A rise in temperature promotes inner-sphere complexation, which in turn leads to an increase in Ni(II) sorption on Ca-montmorillonite. Sorption edges are fitted excellently by surface complexation model (SCM) with the aid of surface species determined from EXAFS spectroscopy.  相似文献   

12.
The adsorption of cadmium onto goethite in the presence of citric acid was measured as a function of pH and cadmium concentration at 25 degrees C. Potentiometric titrations were also performed on the system. Cadmium adsorption onto goethite was enhanced above pH 4 in the presence of 50 microM, 100 microM and 1 mM citric acid. While there was little difference between the enhancements caused by 50 and 100 microM citric acid below pH 6, above pH 6 further enhancement is seen in the presence of 100 microM citric acid. When 1 mM citric acid was present, the enhancement of cadmium adsorption was greater below pH 6, with increased Cd(II) adsorption down to pH 3.5. However, above pH 6, 1 mM of citric acid caused slightly less enhancement than the lower citric acid concentrations. ATR-FTIR spectra of soluble and adsorbed citrate-cadmium species were measured as a function of pH. At pH 4.6 there was very little difference between the ternary Cd(II)-citric acid-goethite spectrum and the binary citric acid-goethite spectrum. However, spectra of the ternary system at pH 7.0 and 8.7 indicated the presence of additional surface species. Further analysis of the spectra suggested that these were metal-ligand outer-sphere complexes. Data from the adsorption experiments and potentiometric titrations of the ternary Cd(II)-citric acid-goethite system were fitted by an extended constant-capacitance surface complexation model. The spectroscopic data were used to inform the choice of surface species. Three reactions in addition to those for the binary Cd(II)-goethite and citric acid-goethite systems were required to describe all of the data. They were [formula in text], [formula in text], and [formula in text]. Neither the spectroscopy nor the modeling suggested the formation of a ternary inner-sphere complex or a surface precipitate under the conditions used in this study.  相似文献   

13.
Binary and ternary systems of copper(II) with O-phospho-L-threonine (Thr-P) and biogenic amines (putrescine or spermidine or spermine) have been investigated. The studies were performed in aqueous solution. Overall stability constants of the complexes were determined by pH-metric study and the coordination sites were identified by 31P NMR, visible and electron paramagnetic resonance spectroscopies. Results of the equilibrium and spectral studies have shown that in the phosphothreonine binary system Cu(HThr-P), Cu(Thr-P) and Cu(Thr-P)(OH) are formed. In the binary system at low pH, only the phosphate group is involved in coordination but at higher pH, the efficiency of ?PO4 2? is low and the amine and carboxylate are the main sites of coordination. Formation of complexes was established in ternary systems with all bioamines studied. In these systems the reaction centers of phosphothreonine are the same as in the binary systems: phosphate, carboxylate and amine. Additionally, amine groups from the polyamines (PAs) are involved in the complex formation. Besides the heteroligand complexes with intermolecular interactions, also molecular complexes with the protonated bioamine in the outer coordination sphere appeared. In these molecular species, PA was involved in non-covalent interactions with the anchoring phospho-threonine complex.  相似文献   

14.
The competitive adsorption between oxalate and malonate at the water-goethite interface was studied as a function of pH and total ligand concentrations by means of quantitative adsorption measurements and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results obtained show that ATR-FTIR spectroscopy resolves the individual spectroscopic features of oxalate and malonate when adsorbed simultaneously at the water-goethite interface. The characteristic peaks of all four types of predominating surface complexes existing in the single ligand systems were identified, namely one inner sphere and one outer sphere surface complex for each ligand. The quantitative adsorption data showed that oxalate partially out-competes malonate at the water-goethite interface. Evaluation of the peak area variations as a function of pH indicated that the stronger oxalate adsorption can be ascribed to the more stable inner sphere surface complex of oxalate, which in turn is related to the oxalate five-member chelate ring structure yielding a more stable complex compared to the six-member ring of malonate.  相似文献   

15.
X-ray absorption fine structure (XAFS) spectroscopy was employed to determine the bonding environment of As(V) in the presence of Cu(II) and Zn(II) on goethite and gibbsite. In addition, several mineral species and precipitates derived from homogeneous and heterogeneous (presence of alpha-Cr(2)O(3)) super-saturations were studied. Structural parameters were determined after resolving the broad second shells in r-space by differential k-weighting (1, 2 or 3) and k-ranging (2.5- vs 3.5-12.75 A) of the raw EXAFS functions. In precipitates, AsO(4) was incorporated in the metal-hydroxides forming clinoclase-like and koettigite-like structures in the presence of Cu(II) and Zn(II), respectively. In the presence of both Cu(II) and Zn(II), the clinoclase structure formed preferentially over the koettigite structure under homogeneous oversaturated solution conditions and in the presence of eskolaite (alpha-Cr(2)O(3)). Silica promoted the formation of koettigite-like zinc-arsenate precipitates from initial As(V) and Zn(II) solution concentrations of 500 muM. On goethite and gibbsite, 750 muM As(V) formed mainly bidentate binuclear surface species in accordance with many previous findings even in the presence of equimolar Cu(II) and or Zn(II) concentrations. Copper was readily identified in the second shell environment of As(V) sorbed on gibbsite, but not on goethite. We hypothesize that this complex formed on the basis of Cu(II)'s ability to form polymeric species in solution and at the mineral-water interface in agreement with previous studies. The effects of Zn(II) on the coordination environment of As(V) on gibbsite and goethite could not be ascertained with As K-edge EXAFS spectroscopy. In addition to bidentate binuclear surface complexes, As(V) formed edge-sharing complexes with Fe, Al, and Cu atoms, which we could differentiate on the basis of the inter-atomic distances, phase shifts between wavefunctions of Fourier-filtered peaks, and differences in amplitude of the absorption envelopes. The analyses showed that of all data reduction steps, data presented in r-space and as wavefunctions of Fourier-filtered shells offer the greatest possibility for fingerprinting and inferring the influence of co-sorbing metal cations on the As(V) sorption complex. With regards to interpretations of micro-EXAFS data by abstract factor analyses and linear least-square combination fitting, analyses of As K-edge data should not be performed on the raw chi(k) data, but rather on consistently isolated second and higher-order shell features.  相似文献   

16.
Typically, a significant fraction of phosphorus in soils is composed of organic phosphates, and this fraction thus plays an important role in the global phosphorus cycle. Here we have studied adsorption of monomethyl phosphate (MMP) to goethite (α-FeOOH) as a model system in order to better understand the mechanisms behind adsorption of organic phosphates to soil minerals, and how adsorption affects the stability of these molecules. The adsorption reactions and stability of MMP on goethite were studied at room temperature as a function of pH, time and total concentration of MMP by means of quantitative batch experiments, potentiometry and infrared spectroscopy. MMP was found to be stable at the water-goethite interface within the pH region 3-9 and over extended periods of time, as well as in solution. The infrared spectra indicated that MMP formed three predominating pH-dependent surface complexes on goethite, and that these interacted monodentately with surface Fe. The complexes differed in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The presented surface complexation model was based on the collective spectroscopic and macroscopic results, using the Basic Stern approach to describe the interfacial region. The model consisted of three monodentate inner sphere surface complexes where the MMP complexes were stabilized by hydrogen bonding to a neighboring surface site. The three complexes, which had equal proton content and thus could be defined as surface isomers, were distinguished by the distribution of charge over the 0-plane and β-plane. In the high pH-range, MMP acted as a hydrogen bond acceptor whereas it was a hydrogen bond donor at low pH.  相似文献   

17.
A structural investigation of complexes formed between the Pb(2+) ion and glutathione (GSH, denoted AH(3) in its triprotonated form), the most abundant nonprotein thiol in biological systems, was carried out for a series of aqueous solutions at pH 8.5 and C(Pb(2+)) = 10 mM and in the solid state. The Pb L(III)-edge extended X-ray absorption fine structure (EXAFS) oscillation for a solid compound with the empirical formula [Pb(AH(2))]ClO(4) was modeled with one Pb-S and two short Pb-O bond distances at 2.64 ± 0.04 and 2.28 ± 0.04 ?, respectively. In addition, Pb···Pb interactions at 4.15 ± 0.05 ? indicate dimeric species in a network where the thiolate group forms an asymmetrical bridge between two Pb(2+) ions. In aqueous solution at the mole ratio GSH/Pb(II) = 2.0 (C(Pb(2+)) = 10 mM, pH 8.5), lead(II) complexes with two thiolate ligands form, characterized by a ligand-to-metal charge-transfer band (LMCT) S(-) → Pb(2+) at 317 nm in the UV-vis spectrum and mean Pb-S and Pb-(N/O) bond distances of 2.65 ± 0.04 and 2.51 ± 0.04 ?, respectively, from a Pb L(III)-edge EXAFS spectrum. For solutions with higher mole ratios, GSH/Pb(II) ≥ 3.0, electrospray ionization mass spectroscopy spectra identified a triglutathionyllead(II) complex, for which Pb L(III)-edge EXAFS spectroscopy shows a mean Pb-S distance of 2.65 ± 0.04 ? in PbS(3) coordination, (207)Pb NMR spectroscopy displays a chemical shift of 2793 ppm, and in the UV-vis spectrum, an S(-) → Pb(2+) LMCT band appears at 335 nm. The complex persists at high excess of GSH and also at ~25 K in frozen glycerol (33%)/water glasses for GSH/Pb(II) mole ratios from 4.0 to 10 (C(Pb(2+)) = 10 mM) measured by Pb L(III)-edge EXAFS spectroscopy.  相似文献   

18.
The present study reports removal of As(V) by adsorption onto laboratory-prepared pure and Cu(II)-, Ni(II)-, and Co(II)-doped goethite samples. The X-ray diffraction patterns showed only goethite as the crystalline phase. Doping of ions in the goethite matrix resulted in shift of d-values. Various parameters chosen for adsorption were nature of adsorbent, percentage of doped cations in goethite matrix, contact time, solution pH, and percentage of adsorbate. It was observed that the pH(pzc) of the goethite surface depended on the nature and concentration of metal ions. The surface area as well as the loading capacity increased with the increase of dopant percentage in goethite matrix. A maximum loading capacity of 19.55 mg/g was observed for 2.7% Cu(II)-doped goethite. The adsorption kinetics for Ni(II), Co(II) and for undoped goethite attained a quasi-equilibrium state after 30 min with almost negligible adsorption beyond this time. In case of Cu(II)-doped goethite samples, the quasi-equilibrium state for As(V) adsorption was observed after 60 min. At each studied pH condition, it was observed that the percentage of adsorption of As(V) decreased in the order Cu(II)-doped goethite > or = Ni(II)-doped goethite > Co(II)-doped goethite > pure goethite. The adsorption followed: Langmuir isotherm, indicating monolayer formation.  相似文献   

19.
The formation, composition, structure, and electrochemical properties of ternary surface complexes between copper(II) and ethylenediaminetetraacetate adsorbed on TiO(2) xerogels and on thin-film TiO(2) electrodes from solutions of varying pH have been studied by potentiometry, EPR spectroscopy, and electrochemical methods. The results strongly indicate that, in contrast to other organic ligands, B-type ternary surface complexes are formed in this system. The organic ligand forms an isolating layer between the surface of the TiO(2) electrode and the redox-active copper ions. Copyright 2001 Academic Press.  相似文献   

20.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号