首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polyhedron》1988,7(5):337-343
The new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with tridentate Schiff base, the product of condensation of o-aminobenzyl alcohol with salicylaldehyde have been synthesized and characterized by elemental analysis, IR, electronic, EPR and Mössbauer spectra, thermal analysis, magnetic susceptibility and molecular weight measurements. Dimeric or polymeric structures for the investigated complexes were proposed. The interaction of the cobalt complex with dioxygen is also described.  相似文献   

2.
3.
The hippurates of Co(II), Ni(II), Cu(II) and Zn(II) were isolated from the solution, their quantitative composition and the way of coordination of metal — ligand were determined and the conditions and products of thermal decomposition during heating in air atmosphere up to 1273 K were studied. The complexes of Ni(II), Cu(II) and Zn(II) heated lose some water molecules and then decompose to MO. The hippurate of Co(II) heated loses some water molecules and then decomposes to CoO with intermediate formation Co3O4.
Zusammenfassung Aus Lösung wurden die Co(II)-, Ni(II)-, Cu(II)- und Zn(II)-Salze der Hippursäure gewonnen, ihre quantitative Zusammensetzung sowie die Art der Koordination der Metall-Ligandenbindung bestimmt. Weiterhin wurden die Bedingungen und Produkte der thermischen Zersetzung beim Erhitzen in einer Luftatmosphäre bis 1273 K untersucht. Die Komplexe von Ni(II), Cu(II) und Zn(II) verlieren beim Erhitzen ein paar Moleküle Wasser und zersetzen sich anschlieend zu MO. Co(II)-hippurat gibt beim Erhitzen einige Moleküle Wasser ab und zersetzt sich dann über die Zwischenstufe Co3O4 zu CoO.
  相似文献   

4.
The divalent copper, nickel, cobalt and trivalent chromium, molybdenium and iron chelate compounds derived from bis(acetylacetone) ethylenediimine were grafted on activated silica gel using a batch process in methanolic solution. The sequence of the maximum retention capacity was Cr(III)>Mo(III)>Fe(III)>Co(II)>Ni(II)>Cu(II). Calorimetric titration was employed to study the interaction of activated silica gel with these series of metal chelate compounds. Exothermic enthalpic results were obtained throughout all interactions process. The spontaneity of these systems was reflected in negative and positive free Gibbs energy from entropic values.  相似文献   

5.
Oxazolone forms (1:1) complexes with Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ chlorides, as well as forms (1:1) complexes with Co2+ and Cu2+ acetates. All the complexes are found to be non-electrolytes in DMF; tetrahedral, square-planar and octahedral structures are assigned to them based on electronic and magnetic data. IR studies reveal that the complexes are formed by donating the lone-pair electron from O and N atoms to the metal ion. The thermal decomposition of the [ML·mnH2O]y·H2O chelates was studied by TG–DTA techniques. The mechanism of the decomposition has been established from TG–DTA data. The kinetic parameters, activation energy (Ea) and pre-exponential factor (A), were calculated from TG curves using Coats and Redfern method. Relative thermal stabilities of the chelates have been evaluated on the basis of these parameters.  相似文献   

6.
7.
8.
The oxovanadium(IV), Cr(III), Ni(II), Co(II), and Cu(II) chelates of some bisketimino Schiff-base ligands (H2L) obtained by condensation of 4-butyryl-3-methyl-1-phenyl-(or-1,3-diphenyl)-2-pyrazolin-5-ones with thiourea were synthesized and characterized by elemental analyses and thermogravimetric analyses, molar conductivities, magnetic susceptibility measurements, mass, infrared, and electronic spectroscopies. Ligand field parameters, such as splitting energy, Racah parameter, spin–orbit coupling constant, and covalency parameter of the Cr(III), Ni(II), and Co(II) chelates were calculated by band-fitting methods. Based on these studies, tetragonally distorted octahedral environment around OV(IV) and Cu(II) and octahedral Cr(III), Ni(II), and Co(II) have been proposed.  相似文献   

9.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

11.
12.
Infrared (IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), derivative thermogravimetric analysis (DTG), differential thermal analysis (DTA) and molar conductivity studies have been carried out on the chelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3-methyl- and 3-phenyl-4-nitroso-5-pyrazolones. The solid chelates were synthesized, separated, analyzed and their structures were elucidated. The data obtained show that almost all of the prepared chelates contain water molecules in their coordination sphere. The initial stage in the thermal decomposition process of these chelates shows the presence of water molecule, the second denotes to the intermediate products. The final decomposition products were found to be the respective metal oxides. The NMR spectrum of 3-methyl-4-nitroso-5-pyrazolone ligand shows the existence of the oxime rather than the nitroso form. 3-phenyl-4-nitroso-5-pyrazolone acts as a neutral bidentate ligand whereas 3-methyl-4-nitroso-5-pyrazolone acts as monobasic bidentate ligand bonded to the metal ions through the two oxygen atoms of the carbonyl and nitroso groups. The solid chelates prepared behave as non-electrolytes in DMF solution. The coordination numbers of the obtained chelates using 3-methyl-4-nitroso-5-pyrazolone are four on applying the mole ratio 1:1 and six on using 1:2 mole ratio. In case of using the ligand 3-phenyl-4-nitroso-5-pyrazolone the coordination number is six in both cases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
B. Magyar  F.I. Lobanov 《Talanta》1973,20(1):55-63
The accuracy of the determination by X-ray fluorescence spectrometry of a number of metals in pressed tablets of oxine has been investigated. A procedure is described which has been used for the determination of trace metals in fresh water and in sugar, in which molten oxine is used as the extractant.  相似文献   

14.
Binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes of general composition [M2L1-2(μ-Cl)Cl2] · nH2O with the Schiff-base ligands (where L1H and L2H are the potential pentadentate ligands derived by condensing 2,6-diformyl-4-methylphenol with 4-amino-3-antipyrine and 2-hydroxy-3-hydrazinoquinoxiline, respectively) have been synthesized and characterized. Analytical and spectral studies support the above formulation. 1H-NMR and IR spectra of the complexes suggest they have an endogenous phenoxide bridge, with chloride as the exogenous bridge atom. The electronic spectra of all the complexes are well characterized by broad d–d and a high intensity charge-transfer transitions. The complexes are chloro-bridged as evidenced by two intense far-IR bands centered around 270–280 cm−1. Magnetic susceptibility measurements show that complexes are antiferromagnetic in nature. The compounds show significant growth inhibitory activity against fungi Aspergillus niger and Candida albicans and moderate activity against bacteria Bacillus cirroflagellosus and Pseudomonas auresenosa.  相似文献   

15.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The synthesis of five homoleptic transition metal complexes of bis-(phenyl)-diisoindol-aza-methene is described together with the optical, electrochemical and thermal properties of these compounds. Additionally, crystal structures for the Co and the Zn complex are reported.  相似文献   

17.
Complexes of vanillin thiosemicarbazone (3-methoxy-4-hydroxybenzaldehyde thiosemicarbazone), (vtsch) with several divalent metal ions have been isolated. Structures have been assigned to these complexes based on electrical conductivity, magnetic susceptibility and spectroscopic measurements  相似文献   

18.
The Schiff base ligand, pyrral-l-histidinate(L) and its Co(II), Ni(II), Cu(II) and Zn(II) complexes were synthesized and characterized by elemental analysis, mass, molar conductance, IR, electronic, magnetic measurements, EPR, redox properties, thermal studies, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR data show that the ligand is tridentate and the binding sites are azomethine nitrogen, imidazole nitrogen and carboxylato oxygen atoms. Electronic spectral and magnetic measurements indicate tetrahedral geometry for Co(II) and octahedral geometry for Ni(II) and Cu(II) complexes, respectively. The observed anisotropic g values indicate the presence of Cu(II) in a tetragonally distorted octahedral environment. The redox properties of the ligand and its complexes have been investigated by cyclic voltammetry. Thermal decomposition profiles are consistent with the proposed formulations. The powder XRD and SEM studies show that all the complexes are nanocrystalline. The in vitro biological screening effects of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species, Aspergillus niger, Aspergillus flavus and Candida albicans by the disc diffusion method. The results indicate that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence and absence of H2O2.  相似文献   

19.
Hydrazinium ethylenediaminetetraacetatometalate complexes of the type, N2H5 [M(Hedta)·H2O] were subjected to systematic TG/DTG analysis. The decomposition process consists of three stages. Kinetic parameters were evaluated for each of these stages using the Coats-Redfern equation.  相似文献   

20.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号