首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with torsional wave propagation in a linear gradient-elastic half-space. More specifically, we prove that torsional surface waves (i.e. waves with amplitudes exponentially decaying with distance from the free surface) do exist in a homogeneous gradient-elastic half-space. This finding is in contrast with the well-known result of the classical theory of linear elasticity that torsional surface waves do not exist in a homogeneous half-space. The weakness of the classical theory, at this point, is only circumvented by modeling the half-space as having material properties variable with depth (E. Meissner, Elastische Oberflachenwellen mit Dispersion in einem inhomogenen Medium, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 66 (1921) 181–195; I. Vardoulakis, Torsional surface waves in inhomogeneous elastic media, Internat. J. Numer. Anal. Methods Geomech. 8 (1984) 287–296; G.A. Maugin, Shear horizontal surface acoustic waves on solids, in: D.F. Parker, G.A. Maugin (Eds.), Recent Developments in Surface Acoustic Waves, Springer Series on Wave Phenomena, vol. 7, Springer, Berlin, 1988, pp. 158–172), as a layered structure (Maugin, 1988; E. Reissner, Freie und erzwungene Torsionsschwingungen des elastischen Halbraumes, Ingenieur-Archiv 8 (1937) 229–245) or by considering couplings with electric and magnetic fields for different types of materials (Maugin, 1988). The theory employed here is the simplest possible version of Mindlin’s (R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964) 51–78) generalized linear elasticity. A simple wave-propagation analysis based on Hankel transforms and complex-variable theory was done in order to determine the conditions for the existence of the torsional surface motions and to derive dispersion curves and cut-off frequencies. Also, we notice that, up to date, no other generalized linear continuum theory (including the integral-type non-local theory) has successfully been proposed to predict torsional surface waves in a homogeneous half-space.  相似文献   

2.
The consideration of higher-order gradient effects in a classical elastodynamic problem is explored in this paper. The problem is the anti-plane shear analogue of the well-known Lamb's problem. It involves the time-harmonic loading of a half-space by a single concentrated anti-plane shear line force applied on the half-space surface. The classical solution of this problem based on standard linear elasticity was first given by J.D. Achenbach and predicts a logarithmically unbounded displacement at the point of application of the load. The latter formulation involves a Helmholtz equation for the out-of-plane displacement subjected to a traction boundary condition. Here, the generalized continuum theory of gradient elasticity with surface energy leads to a fourth-order PDE under traction and double-traction boundary conditions. This theory assumes a form of the strain-energy density containing, in addition to the standard linear-elasticity terms, strain-gradient and surface-energy terms. The present solution, in some contrast with the classical one, predicts bounded displacements everywhere. This may have important implications for more general contact problems and the Boundary-Integral-Equation Method.  相似文献   

3.
This article is concerned with Rayleigh waves propagating along the free surface of a macroscopically homogeneous, prestressed half-space. In the meso-scale, the half-space in question is taken to be a textured polycrystalline aggregate of cubic crystallites, which has the normal to its free surface being a 2-fold axis of monoclinic sample symmetry. Under the theoretical framework of linear elasticity with initial stress, an angular dependence formula, which shows explicitly how the phase velocity of Rayleigh waves depends on the propagation direction, the prestress, and the crystallographic texture, is derived from a constitutive equation motivated by Hartig's law. This velocity formula includes terms which describe the effects of texture on acoustoelastic coefficients, and it is correct to within terms linear in the initial stress and in the anisotropic part of the incremental elasticity tensor. Since its derivation makes no presumption on the origin of the initial stress, this velocity formula is meant to be applicable when the prestress is induced by plastic deformations such as those incurred during the surface enhancement treatment of low plasticity burnishing. The angular dependence formula assumes a simpler form when the texture of the prestressed half-space is orthorhombic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper deals with the propagation of acceleration waves in constrained linear elastic materials, within the framework of the so-called linearized finite theory of elasticity, as defined by Hoger and Johnson in [12, 13]. In this theory, the constitutive equations are obtained by linearization of the corresponding finite constitutive equations with respect to the displacement gradient and significantly differ from those of the classical linear theory of elasticity. First, following the same procedure used for the constitutive equations, the amplitude condition for a general constraint is obtained. Explicit results for the amplitude condition for incompressible and inextensible materials are also given and compared with those of the classical linear theory of elasticity. In particular, it is shown that for the constraint of incompressibility the classical linear elasticity provides an amplitude condition that, coincidently, is correct, while for the constraint of inextensibility the disagreement is first order in the displacement gradient. Then, the propagation condition for the constraints of incompressibility and inextensibility is studied. For incompressible materials the propagation condition is solved and explicit values for the squares of the speeds of propagation are obtained. For inextensible materials the propagation condition is solved for plane acceleration waves propagating into a homogeneously strained material. For both constraints, it is shown that the squares of the speeds of propagation depend by terms that are first order in the displacement gradient, while in classical linear elasticity they are constant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We find a sufficient condition for the existence of surface (Rayleigh) waves based on the Rayleigh-Ritz variational method. When specialized to a homogeneous half-space, the sufficient condition recovers the known criterion for the existence of subsonic surface waves. A simple existence criterion in terms of material properties is obtained for periodic half-spaces of general anisotropic materials. Further, we numerically compute the dispersion relation of the surface waves for a half-space of periodic laminates of two materials and demonstrate the existence of surface wave band gaps.  相似文献   

6.
Diffraction of plane harmonic waves by three-dimensional surface irregularities is investigated through the use of an indirect boundary integral equation method. The irregularity of an arbitrary shape is embedded in an elastic half-space and subjected to incident P, SV, SH, and Rayleigh waves. The material of the half-space is assumed to be linear, weakly anelastic, homogeneous and isotropic.

The accuracy of the method is demonstrated through comparison of the results with existing axisymmetric solutions. Several numerical examples for non-axisymmetric canyons are presented. The resulting amplification patterns exhibit strong sensitivity on type and angle of the incident waves and on the location of the observation point. Systematic comparisons of three-dimensional and corresponding two-dimensional models demonstrate similarity of the amplification pattern. The amplification is larger in some three-dimensional models than in two-dimensional ones. Strong coupling between SH and P-SV modes is observed for off-azimuthal incident waves. This phenomenon is specially pronounced for incident SH waves and it is intrinsic to three-dimensional scattering.  相似文献   


7.
Consider a nano-scaled film which is made from highly conductive materials and is subjected to a uniform and constant magnetic field at the vicinity of its surfaces. The characteristics of the propagated shear horizontal (SH) waves within such a nanostructure are of particular interest. By decomposing the magnetically affected nanofilm into the surface layers and the bulk, surface elasticity is adopted and their equations of motion for the SH waves are constructed. The demonstrated dispersion curves reveal that the SH waves can propagate or be damped within the nanofilm in two manners: symmetric and asymmetric. Thereafter, the roles of the magnetic field strength and the thickness on the dispersion curves and phase velocities of both symmetric and asymmetric SH waves are addressed. Additionally, the limitations of the classical continuum theory in predicting the characteristics of SH waves are displayed and discussed.  相似文献   

8.
It is well known that the classical theory of elasticity predicts Rayleigh-wave motions, which are not dispersive at any frequency. Of course, at high frequencies, this is a result that contradicts experimental data and also does not agree with results of the discrete particle theory (atomic-lattice approach). To remedy this shortcoming, the Mindlin–Green–Rivlin theory of dipolar gradient elasticity is employed here to analyze waves of the Rayleigh type propagating along the surface of a half-space. The analysis shows that these waves are indeed dispersive at high frequencies, a result that can be useful in applications of high-frequency surface waves, where the wavelength is often on the micron order. Provided that certain relations hold between the various microstructure parameters entering the theory employed here, the dispersion curves of these waves have the same form as that given by previous analyses based on the atomic-lattice theory. In this way, the present analysis gives also means to obtain estimates for microstructure parameters of the gradient theory.  相似文献   

9.
The three-dimensional axisymmetric Boussinesq problem of an isotropic half-space subjected to a concentrated normal quasi-static load is studied within the framework of dipolar gradient elasticity involving linear constitutive relations and small strains. Our main concern is to determine possible deviations from the predictions of classical linear elastostatics when a more refined theory is employed to attack the problem. Of special importance is the behavior of the new solution near to the point of application of the load where pathological singularities exist in the classical solution. The use of the theory of gradient elasticity is intended here to model the response of materials with microstructure in a manner that the classical theory cannot afford. A linear version of this theory (as regards both kinematics and constitutive response) results by considering a linear isotropic expression for the strain-energy density that depends on strain gradient terms, in addition to the standard strain terms appearing in classical elasticity and by considering small strains. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants. The solution method is based on integral transforms and is exact. The present results show significant departure from the predictions of classical elasticity. Indeed, continuous and bounded displacements are predicted at the points of application of the concentrated load. Such a behavior of the displacement field is, of course, more natural than the singular behavior exhibited in the classical solution.  相似文献   

10.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

11.
Surface Impedance Tensors of Textured Polycrystals   总被引:1,自引:0,他引:1  
A formula for the surface impedance tensors of orthorhombic aggregates of cubic crystallites is given explicitly in terms of the material constants and the texture coefficients. The surface impedance tensor is a Hermitian second-order tensor which, for a homogeneous elastic half-space, maps the displacements given at the surface to the tractions needed to sustain them. This tensor plays a fundamental role in Stroh's formalism for anisotropic elasticity. In this paper we account for the effects of crystallographic texture only up to terms linear in the texture coefficients and give an explicit formula for the terms in the surface impedance tensor up to those linear in the texture coefficients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
This paper proves that the linear elastic behavior of the material with inhomogeneous pre-stresses can be described by the Willis equations. In this case, the additional terms in the Willis equations, compared with the classical linear elastic equations for homogeneous media, are related to the gradient of pre-stresses. In this way, the material length scale is naturally incorporated in the framework of continuum mechanics. All these findings also coincide with the results of transformation elastodynamics, so that they can meet the requirement of the principle of material objectivity and the principle of general invariance.  相似文献   

13.
The strain gradient elasticity theory with surface energy is applied to Boussinesq–Flamant problem. The solution for the vertical displacements at the surface of half space due to the surface normal line load is presented. The theory includes both volumetric and surface energy terms. Boussinesq–Flamant problem in the strain gradient elasticity is solved by means of Fourier transform. The results obtained show that the vertical displacements of half space in the gradient elasticity are some different from that in the classical elasticity and the effects of the strain gradient parameters (material characteristic lengths) on the vertical displacements do exist.  相似文献   

14.
This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.  相似文献   

15.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

16.
Herein we consider Rayleigh waves propagating along the free surface of a macroscopically homogeneous, anisotropic, prestressed half-space. We adopt the formulation of linear elasticity with initial stress and assume that the deviation of the prestressed anisotropic medium from a comparative ‘unperturbed’, unstressed and isotropic state, as formally caused by the initial stress and by the anisotropic part of the incremental elasticity tensor, be small. No assumption, however, is made on the material anisotropy of the incremental elasticity tensor. With the help of the Stroh formalism, we derive a first-order perturbation formula for the shift of phase velocity of Rayleigh waves from its comparative isotropic value. Our perturbation formula does not agree totally with that which was derived some years ago by Delsanto and Clark, and we provide another argument as further support for our version of the formula. According to our first-order formula, the anisotropy-induced velocity shifts of Rayleigh waves, taken in totality of all propagation directions on the free surface, carry information only on 13 elastic constants of the anisotropic part of the incremental elasticity tensor. The remaining eight elastic constants are those which would become zero if were monoclinic with the two-fold symmetry axis normal to the free surface of the material half-space in question.  相似文献   

17.
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.  相似文献   

18.
In this paper, we consider the propagation of Rayleigh surface waves in a functionally graded isotropic thermoelastic half-space, in which all thermoelastic characteristic parameters exponentially change along the depth direction. The propagation condition is established in the form of a bicubic equation whose coefficients are complex numbers while the analytical solutions (eigensolutions) of the thermoelastodynamic system are explicitly obtained in terms of the characteristic solutions. The concerned solution of the Rayleigh surface wave problem is subsequently expressed as a linear combination of the three eigensolutions while the secular equation is established in an implicit form. The explicit secular equation is written when an isotropic and homogeneous thermoelastic half-space is considered and some numerical simulations are given for a specific material.  相似文献   

19.
This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations relating the (ordinary, double and triple) generalized momenta to the inertia forces. As a consequence of the surface effects, the latter inertia forces include (ordinary) inertia body forces within the bulk material, as well as (ordinary and double) inertia surface tractions on the boundary layer and (ordinary) inertia line tractions on the edge line rod; they all depend on the acceleration in a nonstandard way, but the classical laws are recovered in the case of no higher order inertia. The classical linear and angular momentum theorems are extended to the present context of second velocity gradient inertia, showing that the extended theorems—used in conjunction with the Cauchy traction theorem—lead to the local force and moment (stress symmetry) motion equations, just like for a classical continuum. A gradient elasticity theory is proposed, whereby the dynamic evolution problem for assigned initial and boundary conditions is shown to admit a Hamilton-type variational principle; the uniqueness of the solution is also discussed. A few simple applications to wave propagation and dispersion problems are presented. The paper indicates the correct way to describe the inertia forces in the presence of higher order inertia; it extends and improves previous findings by the author [Polizzotto, C., 2012. A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137]. Overall conclusions are drawn at the end of the paper.  相似文献   

20.
This paper is about the dispersion analysis of surface waves propagating at the interface between an inviscid fluid and a higher gradient homogeneous elastic solid modelled as a dipolar gradient continuum. In order to compare the results, a second gradient model is also evaluated. The analysis is carried out by finding the roots of the secular equation, and by carefully studying their physical meaning. As it is well known, higher gradient continua are dispersive, i.e. phase and group velocities are frequency dependent. As a consequence, the existence of surface waves will indeed depend on frequency. In order to investigate the behaviour of surface waves in this specific fluid–solid configuration, a complete dispersion analysis is performed, with a particular focus on the frequency range in which the phase velocity of shear waves is lower than the speed of waves of the fluid. Surface waves of the type Leaky Rayleigh and Scholte–Stoneley are observed in this frequency range. This work extends the knowledge on surface waves in the case of higher gradient solids and applications of these results can be found in the field of non-destructive damage evaluation in micro structured materials, composites, metamaterials and biological tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号