首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Micron‐sized monodisperse superparamagnetic polyglycidyl methacrylate (PGMA) particles with functional amino groups were prepared by a process involving: (1) preparation of parent monodisperse PGMA particles by the dispersion polymerization method, (2) chemical modification of the PGMA particles with ethylenediamine (EDA) to yield amino groups, and (3) impregnation of iron ions (Fe2+ and Fe3+) inside the particles and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer particles. The resultant magnetic PGMA particles with amino groups were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffractometry (XRD), and vibrating sample magnetometry (VSM). SEM showed that the magnetic particles had an average size of 2.6 μm and were highly monodisperse. TEM demonstrated that the magnetite nanoparticles distributed evenly within the polymer particles. The existence of amino groups in the magnetic polymer particles was confirmed by FTIR. XRD indicated that the magnetic nanoparticles within the polymer were pure Fe3O4 with a spinel structure. VSM results showed that the magnetic polymer particles were superparamagnetic, and saturation magnetization was found to be 16.3 emu/g. The Fe3O4 content of the magnetic particles was 24.3% based on total weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3433–3439, 2005  相似文献   

2.
Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.  相似文献   

3.
The effect of coating with nine different carboxylic acids (glycolic, propionic, lactic, malic, tartaric, citric, mandelic, caproic and caprylic) on nanostructured magnetite (D ~ 10 nm) was studied by Raman and photoacoustic, magnetic and 57Fe Mössbauer measurements. Mössbauer spectra of frozen suspensions showed dominantly magnetically split envelopes at lower temperatures, which were evaluated by hyperfine field distribution method. Mössbauer and Raman spectroscopy indicated similar variation of relative occurrence of magnetite and maghemite phases. These results are discussed on the basis of the hypothesis that different carboxylic acids can promote either the oxidation or reduction of iron oxide nanoparticles.  相似文献   

4.
In this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.   相似文献   

5.
Water treatment is an important concern of human societies. Using magnetic nanoparticles as adsorbents for metal removal has been greatly considered due to their particular characteristics such as small sizes, high surface area to volume ratios, and good magnetic properties. In the present study, a modification was implemented in magnetite particles by functionalized carbon nanotubes and carboxylic groups to enhance the performance of magnetite particles in removing hexavalent chromium from water using the adsorption method. The applicability of the nanoadsorbent and magnetic nanoparticles was compared based on adsorption factors affecting the chromium removal including pH, contact time, pollutant concentration, and the adsorbent amount. Properties of the nanocomposites were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the highest percentage of Cr (VI) removal for both adsorbents was under acidic ambient conditions and lasted less than 45 minutes. The study of Langmuir, Freundlich, and Temkin isotherms in the prediction of adsorption behavior revealed that the Langmuir model better fitted the adsorption equilibrium data. The kinetic analysis of pseudo-first and second-order equations showed that the pseudo-second-order equation was more suitable for describing the kinetic behavior of data. Moreover, the obtained nanocomposite had a better performance in Cr (VI) removal from water in comparison to magnetite nanoparticles.  相似文献   

6.
Magnetic iron oxide (magnetite, Fe3O4) nanoparticles were encapsulated with polystyrene to give a stable water‐based magnetic polymer latex, using the miniemulsion polymerization technique. The resulting magnetic latexes were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer measurements (VSM), and 57Fe Mössbauer spectroscopy measurements. TEM revealed that all magnetite nanoparticles were embedded in the polymer spheres, leaving no empty polystyrene particles. The distribution of magnetite particles within the polystyrene spheres was inhomogeneous, showing an uneven polar appearance. The DLS measurements indicated a bimodal size distribution for the particles in the latexes. According to our magnetometry and Mössbauer spectroscopy data, the encapsulated magnetite particles conserve their superparamagnetic feature when they are separated in the polymer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4802–4808, 2004  相似文献   

7.
The properties of polymer-coated magnetite nanoparticles, which have the potential to be used as effective magnetic resonance contrast agents, have been studied. The magnetite particles were synthesized by using continuous synthesis in an aqueous solution. The polymer-coated magnetite nanoparticles were synthesized by seed precipitation polymerization of methacrylic acid and hydroxyethyl methacrylate in the presence of the magnetite nanoparticles. The particle size was measured by laser light scattering. It was shown that the particle size, variance, magnetic properties, and stability of aqueous magnetite colloidal dispersion strictly depend on the nature of the stabilizing agent. The average hydrodynamic radius of the magnetite particles was found to be 5.7 nm in the stable aqueous colloidal dispersion. An inclusion of the magnetite particle into a hydrophilic polymeric shell increases the stability of the dispersion and decreases the influence of the stabilizing agent on the magnetic and structural properties of the magnetite particles as was shown by X-ray diffraction and M?ssbauer and IR spectroscopy, as well as by vibrating sample magnetometry. The variation in the polymeric shell size and the polymer net density can be useful tools for evaluation of the polymer-coated magnetite particles as effective contrast agents. Copyright 1999 Academic Press.  相似文献   

8.
Sub-micron sized polystyrene particles containing magnetite more than 30 wt.% were prepared by miniemulsion polymerization with commercially available ferricolloid. The effects of some water-soluble initiators and/or oil-soluble initiators on the particles characteristics, such as the size, morphology, magnetic properties and colloidal stability, were studied. The size of monomer droplets/polymer particles increased from 60 to 300 nm during polymerization, keeping magnetic in core when potassium persulfate (KPS) or ammonium persulfate (APS) was used as the sole initiator. These particles were easily separated from the medium within short time scale in external magnetic field, while such characteristics were controlled by the amount of persulfate used for the polymerization. In contrast, when 2,2′-azobis isobutyronitrile (AIBN) was used as the initiator, the size of droplets/particles was retained to be 90 nm at the most and magnetite nanoparticles located at the surface of polystyrene particles, which were so colloidally stable that they were not separated in external magnetic field. The above-mentioned effect of initiators on particle size in persulfate system was likely originated from the decrease of pH value and the increase of ionic strength, which induced the fusion of droplets/particles containing magnetite. Mixed-initiators system resulted in intermediate characteristics, compared with each initiator system. The location of magnetite in the particle seems to depend on where initiation/polymerization occurred in each initiator system.  相似文献   

9.
Magnetic fluids based on magnetite synthesized by the chemical condensation method at temperatures of 25, 40, 60, and 80°C were obtained and studied. Magnetite particles were examined by X-ray phase and X-ray fluorescence analyses and electron microscopy. The average size of the coherent scattering region of magnetite particles was 13–17 nm, depending on the synthesis temperature. Magnetic fluids were synthesized from magnetite particles obtained at 25 and 80°C, with water and octane serving as carrier fluids. The NMR method was used to determine the saturation magnetization and average magnetic moment of the particles: for water-based magnetic fluids, 2100 A m–1 and 5.7 × 10–19 A m2 at magnetite particle synthesis temperature of 25°C and 3670 A m–1 and 4.6 × 10–19 A m2 at magnetite particle synthesis temperature of 80°C; for octane-based magnetic fluids, 2250 A m–1 and 4.1 × 10–19 A m2 at magnetite particle synthesis temperature of 25°C.  相似文献   

10.
The chemical and structural properties of ferrite-based nanoparticles, precursors for magnetic drug targeting, have been studied by Raman confocal multispectral imaging. The nanoparticles were synthesised as aqueous magnetic fluids by co-precipitation of ferrous and ferric salts. Dehydrated particles corresponding to co-precipitation (CP) and oxidation (OX) steps of the magnetic fluid preparation have been compared in order to establish oxidation-related Raman features. These are discussed in correlation with the spectra of bulk iron oxides (magnetite, maghemite and hematite) recorded under the same experimental conditions. Considering a risk of laser-induced conversion of magnetite into hematite, this reaction was studied as a function of laser power and exposure to oxygen. Under hematite-free conditions, the Raman data indicated that nanoparticles consisted of magnetite and maghemite, and no oxyhydroxide species were detected. The relative maghemite/magnetite spectral contributions were quantified via fitting of their characteristic bands with Lorentzian profiles. Another quality parameter, contamination of the samples with carbon-related species, was assessed via a broad Raman band at 1580 cm(-1). The optimised Raman parameters permitted assessment of the homogeneity and stability of the solid phase of prepared magnetic fluids using chemical imaging by Raman multispectral mapping. These data were statistically averaged over each image and over six independently prepared lots of each of the CP and OX nanoparticles. The reproducibility of oxidation rates of the particles was satisfactory: the maghemite spectral fraction varied from 27.8 +/- 3.6% for the CP to 43.5 +/- 5.6% for the OX samples. These values were used to speculate about the layered structure of isolated particles. Our data were in agreement with a model with maghemite core and magnetite nucleus. The overall oxidation state of the particles remained nearly unchanged for at least one month.  相似文献   

11.
A comparison of ionization efficiency for gold and silver nanoparticles used as an active media of matrix‐less laser desorption/ionization (LDI) mass spectrometry (MS) methods was made for carboxylic acids including fatty acids. The matrix‐assisted laser desorption/ionization (MALDI)‐type targets containing monoisotopic cationic 109Ag nanoparticles (109AgNPs) and Au nanoparticles (AuNPs) were used for rapid MS measurements of 10 carboxylic acids of different chemical properties. Carboxylic acids were directly quantified in experiments with 10 000‐fold concentration change conditions ranging from 1 mg/ml to 100 ng/ml which equates to 1 μg to 100 pg of carboxylic acids per measurement spot.  相似文献   

12.
不同形貌Fe3O4纳米粒子的氧化沉淀法制备与表征   总被引:10,自引:0,他引:10       下载免费PDF全文
用一种方法成功合成出了球体、四方体、八面体、不规则多面体、三角形和不规则颗粒等六种具有不同形貌的Fe3O4纳米粒子,通过扫描电子显微镜(SEM)表征了粒子形貌。试样经过X-射线衍射(XRD)表征具有尖晶石结构,且结晶良好。经震动样品磁强计(VSM)测定,各种形貌的Fe3O4纳米粒子都具有良好的磁性,其中八面体形貌的Fe3O4纳米粒子的饱和磁化强度达到86.56 emu·g-1,剩磁为10.64 emu·g-1,矫顽力为138 Oe。讨论了不同形貌的Fe3O4纳米粒子的形成机制,得出了晶核的生长环境对纳米粒子的形貌有重要影响的结论。  相似文献   

13.
The conductivity of polymer composites with magnetic nanoparticles (MNP) containing magnetite and other MNP (Ni, Cu–Ni) in the layers and planar cells with Al electrodes is studied. For soluble polymers (polyvinylpyrrolidone and polyvinyl alcohol) containing 1–10 wt % of magnetite MNP, a substantial effect of MNP on surface conductivity is detected over a wide range (from 10–10 to 10–3 Ω–1). It is shown that the addition of magnetite MNP not only results in a considerable change in cell conductivity, but also leads to its partially irreversible variation (by an order of magnitude or more) via minor modifications of the experimental conditions (temperature, electric field). For high-resistance samples with low probabilities of conducting chain formation, temperature current peaks are observed upon moderate heating (up to 350 K). These peaks are similar to the maxima observed upon polymer electret thermodischarges when the charges are captured by the deep centers associated with separate MNP or MNP aggregates. The type and position of the maxima are determined by the characteristics of the polymer matrix. For polyvinylpyrrolidone composites, the maxima are observed some time after heating (the echo effect). With composites based on solventborne polymers (polyalkanesterimides, soluble polyimide) and Ni, Cu–Ni MNP, no change in film conductivity measured electrophotographically is observed, due to the formation of a dielectric coating formed by polymer macromolecules adsorbed on the MNP surface. An explanation based on the possible formation of magnetic aggregates of magnetite MNP and conducting chains is proposed. Magnetic aggregation IPM is proposed as one way of controlling cell conductivity.  相似文献   

14.
The magnetic properties of arabinogalactan-stabilized iron-containing nanobiocomposites, which include magnetite nanoparticles, were studied. The magnetic characteristics of samples were measured on a SQUID magnetometer in the temperature range of 5–320 K and magnetic fields of up to 1.5·104 G. The coercive force and the residual magnetization of ferroarabinogalactan nanocomposites are inversely dependent on the magnetite nanoparticle size.  相似文献   

15.
Diels–Alder reactions on the surface of nanoparticles allow a thermoreversible functionalization of the nanosized building blocks. We report the synthesis of well-defined magnetite nanoparticles by thermal decomposition reaction and their functionalization with maleimide groups. Attachment of these dienophiles was realized by the synthesis of organophosphonate coupling agents and a partial ligand exchange of the original carboxylic acid groups. The functionalized iron oxide particles allow a covalent surface attachment of a furfuryl-functionalized rhodamine B dye by a Diels–Alder reaction at 60 °C. The resulting particles showed the typical fluorescence of rhodamine B. The dye can be cleaved off the particle surface by a retro-Diels–Alder reaction. The study showed that organic functions can be thermoreversibly attached onto inorganic nanoparticles.  相似文献   

16.
A novel polymer gel exhibiting simultaneous temperature and magnetic field sensitivity has been prepared and studied. Poly(N-isopropylacrylamide) (PNIPA) and magnetic nanoparticles (magnetite, Fe3O4) loaded PNIPA gel beads with mm size and monolith gels with cm size were prepared. The dependence of swelling degree on the temperature has been studied. The effects of cross-linking density and the presence of magnetic nanoparticles on the equilibrium swelling degree as well as on the collapse transition have been investigated. Swelling kinetic measurements were also made. By comparing the equilibrium swelling properties of PNIPA and magnetite loaded PNIPA gels it was found that the built in magnetic nanoparticles do not modify the temperature sensitivity of these gels. Within the experimental accuracy the temperature of the collapse transition was not sensitive to the presence of magnetic particles. We have compared the swelling behaviour of mm size gel beads to the cm size monolith gels in order to study the influence of surface skin layer on the swelling equilibrium. It was established that the extent of surface skin formation was decreased by the presence of magnetic particles.  相似文献   

17.
采用化学共沉淀方法合成了Fe3O4纳米粒子, 用3-甲基丙烯酰氧基丙基三甲氧基硅烷(3-MPS)对其进行表面接枝修饰, 然后以苯乙烯(St)为单体, 过氧化苯甲酰(BPO)为引发剂, 4-羟基-2,2,6,6-四甲基哌啶-1-氧化物自由基(HTEMPO·)为稳定自由基介质, 采用可控/“活性”自由基聚合技术在修饰后的Fe3O4纳米粒子表面原位引发聚合, 制备了粒径小、分布窄、磁含量高的磁性聚苯乙烯(PS)纳米粒子. X射线衍射(XRD)研究表明, 所合成的Fe3O4粒子为尖晶石结构. 凝胶渗透色谱(GPC)分析表明, 聚苯乙烯的分子量与反应时间呈较好的线性关系. 透射电镜(TEM)观察表明, 所制备的磁性聚苯乙烯纳米粒子的粒径在20-30 nm之间. 热重(TG)分析得到磁性聚苯乙烯纳米粒子的磁含量为62.6%. 振动样品磁强计(VSM)测试结果表明, 磁性聚苯乙烯纳米粒子的比饱和磁化强度为31.7 emu·g-1, 呈现单磁畴结构.  相似文献   

18.
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.  相似文献   

19.
Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing   总被引:3,自引:0,他引:3  
Immobilization of bioactive molecules on the surface of magnetic nanoparticles is of great interest, because the magnetic properties of these bioconjugates promise to greatly improve the delivery and recovery of biomolecules in biomedical applications. Here we present the preparation and functionalization of magnetite (Fe3O4) nanoparticles 20 nm in diameter and the successful covalent conjugation of the enzyme glucose oxidase to the amino-modified nanoparticle surface. Functionalization of the magnetic nanoparticle surface with amino groups greatly increased the amount and activity of the immobilized enzyme compared with immobilization procedures involving physical adsorption. The enzymatic activity of the glucose oxidase-coated magnetic nanoparticles was investigated by monitoring oxygen consumption during the enzymatic oxidation of glucose using a ruthenium phenanthroline fluorescent complex for oxygen sensing. The glucose oxidase-coated magnetite nanoparticles could function as nanometric glucose sensors in glucose solutions of concentrations up to 20 mmol L–1. Immobilization of glucose oxidase on the nanoparticles also increased the stability of the enzyme. When stored at 4°C the nanoparticle suspensions maintained their bioactivity for up to 3 months.  相似文献   

20.
Composites containing magnetite nanoparticles in poly(acrylamide-co-hydroxyethylacrylate) cross-linked using poly-ethylene-glycol-diacrylate were prepared and characterized. The magnetite was synthesized in situ in the polymer network by treatment with a water solution of Fe (II) and Fe (III). The salts were then coprecipitated by exposing the swollen gels to ammonia vapors and the obtained magnetic gels dried. The ratio acrylamide (AM)/hydroxyethylacrylate (HEA) was varied to compare matrices with different hydrophilicity. Moreover solutions with different concentration of iron salts were used to swell the gels. The effect of both the network composition and the concentration of iron salts in the swollen polymers on the final structure and properties of the dried magnetic polymers were studied. The investigation was carried out by means of electron diffraction, X-ray diffraction, vibrating sample magnetometry, small angle X-ray scattering and transmission electron microscopy. The coercivity of the magnetic composites prepared was close to zero and they provided super-paramagnetic properties. The decrease of the acrylamide content in the polymer gel and of the iron salts concentration in the swelling aqueous solution leads to the formation of amorphous particles of iron oxide. The average sizes of the magnetite nanoparticles obtained are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号