首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Synchrotron-based X-ray techniques have been widely applied to the fields of environmental science due to their element-specific and nondestructive properties and unique spectral and spatial resolution advantages. The techniques are capable of in situ investigating chemical speciation, microstructure and mapping of elements in question at the molecular or nanometer scale, and thus provide direct evidence for reaction mechanisms for various environmental processes. In this contribution, the applications of three types of the techniques commonly used in the fields of environmental research are reviewed, namely X-ray absorption spectroscopy (XAS), X-ray fluorescence (XRF) spectroscopy and scanning transmission X-ray microscopy (STXM). In particular, the recent advances of the techniques in China are elaborated, and a selection of the applied examples are provided in the field of environmental science. Finally, the perspectives of synchrotron-based X-ray techniques are discussed. With their great progress and wide application, the techniques have revolutionized our understanding of significant geo- and bio-chemical processes. It is anticipatable that synchrotron-based X-ray techniques will continue to play a significant role in the fields and significant advances will be obtained in decades ahead.  相似文献   

2.
    
Summary The total reflection X-ray fluorescence technique (TXRF) was used for the routine analysis of city waste incineration ash. Subjects of these analyses were digested ashes (a) and aqueous leaching solutions (b). The accuracy of TXRF was estimated in comparison with atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (ICP-AES) measurements. Satisfactory agreement was found between the results of the different methods for both types of samples.In addition to the direct measurements without prior sample preparation sample type (b) was used to compare three different extraction methods. In each case a dithiocarbamate derivative was used as complexing agent. The separation of the precipitate was performed with a silicagel column, by liquid/liquid extraction and by leaching the sample on a quartz target. Satisfying agreement was found between direct measurements and the different extraction methods.  相似文献   

3.
用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱和电化学技术研究和比较了直接甲酸燃料电池(DFAFC)中Vulcan XC-72炭黑载Pd (Pd/XC)和大孔炭载Pd (Pd/MC)催化剂对甲酸氧化的电催化性能. 循环伏安曲线测量表明甲酸在Pd/XC和Pd/MC催化剂电极上主要氧化峰的峰电位基本相同, 在0.15 V左右, 但在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大30%左右. 计时电流曲线测量表明, 在6000 s时, 在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大38%左右, 这些结果说明Pd/MC催化剂对甲酸氧化的电催化活性和稳定性要好于Pd/XC催化剂. 由于Pd/MC和Pd/XC催化剂的Pd粒子平均粒径和相对结晶度相似, 因此, Pd/MC催化剂电催化性能好的原因只能归结于MC大的孔径和高的石墨化程度引起的高电导率.  相似文献   

4.
In the swim: until now, X-ray photoelectron spectroscopy (XPS) has been predominantly applied to the investigation of near-surface regions. Recent work has now brought XPS into a new domain with the direct monitoring of bulk reactions in the liquid phase. In the monitored reaction, the cation of an ionic liquid (IL) reacts with the anion of another IL.  相似文献   

5.
In this paper, Ce(IV)–Y, Cu(II)–Y and Cu(II)–Ce(IV)–Y adsorbents were prepared by the liquid-phase ion-exchange Y zeolites with combined Cu and Ce ions at low temperature and room pressure. The adsorbents were characterized by means of X-ray diffraction, N2-adsorption specific surface area measurements (BET), X-ray photoelectron spectroscopy, Pyridine adsorption infrared spectroscopy and Fourier transform infrared. The adsorptive desulfurization properties of these three adsorbents were studied in a fixed-bed unit through a model gasoline which made up of 1-octane solution of the refractory sulfur compounds (Such as thiophene and benzothiophene) and a certain amount of toluene or cyclohexene. The results indicate that Cu(II)–Ce(IV)–Y bind the organic sulfur compounds through two types of adsorption modes: π-complexation and direct sulfur–adsorbent interaction. The adsorption selectivity of sulfur compounds onto Cu(II)–Ce(IV)–Y decreased in the order: benzothiophene > 2,5-dimethylthiophene > 3-methylthiophene > thiophene. The effect of competition components on the metal ion-exchanged Y zeolites for sulfur removal in the order: cyclohexene > toluene. The Cu(II)–Ce(IV)–Y possesses the high sulfur adsorption capacity similar to Cu(II)–Y and high selectivity for sulfur compounds similar to Ce(IV)–Y, which can be attributed to the synergistic interaction between Cu2+ and Ce4+.  相似文献   

6.

Two kaolinitic clays from two Regions of Ghana: Western and Volta Regions, were first calcined at 600 °C for 2 h to transform into the amorphous aluminosilicate phases. The effects of kaolin and alkali ratio as well as aging on the amount and types of zeolite in the resultant geopolymers were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transformed spectroscopy, thermogravimetric analysis and specific surface area measurements. Alkali activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different particle size distributions. The results showed that initial kaolin samples were dependent on the concentration of alkali treatment and crystallization time during the activation treatment and produced zeolite type A along with quartz which showed no reactivity regardless of the variation of the synthesis parameter.

  相似文献   

7.
Multielement analysis by total reflection X-ray fluorescence spectrometry has evolved during two decades. At present commercial equipment is available for chemical analysis of all types of biological and mineral samples. The electronic industry has also benefited from scientific and technological developments in this field due to new instrumentation to determine contamination on the surface of silicon wafers (the equipment will not be covered in this paper). The basic components of the spectrometers can be summarized as follows: (a) excitation source; (b) geometric arrangement (optics) for collimation and monochromatization of the primary radiation; (c) X-ray detector; and (d) software for operation of the instrument, data acquisition and spectral deconvolution to determine the concentrations of the elements (quantitative analysis). As an optional feature one manufacturer offers a conventional 45° geometry for direct excitation. Personal communications of the author and commercial brochures available have allowed us to list the components used in TXRF for multielement analysis. Excitation source: high-power sealed X-ray tubes, output from 1300 to 3000 W, different mixed alloy anodes Mo/W are used but molybdenum, tungsten and copper are common; single anode metal ceramic low power X-ray tubes, output up to 40 W. Excitation systems can be customized according to the requirements of the laboratory. Detector: silicon–lithium drifted semiconductor detector liquid nitrogen cooled; or silicon solid state thermoelectrically cooled detector (silicon drift detector SDD and silicon-PIN diode detector). Optics: multilayer monochromator of silicon–tungsten, nickel–carbon or double multilayer monochromator. Electronics: spectroscopy amplifier, analog to digital converter adapted to a PC compatible computer with software in a Windows environment for the whole operation of the spectrometer and for qualitative/quantitative analysis of samples are standard features in the production of this instrument. The detection limits reported in the literature are presented; pricing, analytical capability, ease of operation, calibration and optical alignment as well as technical support are also discussed.  相似文献   

8.
The internal nanomorphologies of two types of vinyl polymer-silica colloidal nanocomposites were assessed using electron spectroscopy imaging (ESI). This technique enables the spatial location and concentration of the ultrafine silica sol within the nanocomposite particles to be determined. The ESI data confirmed that the ultrafine silica sol was distributed uniformly throughout the poly(4-vinylpyridine)/silica nanocomposite particles, which is consistent with the "currant bun" morphology previously used to describe this system. In contrast, the polystyrene/silica particles had a pronounced "core-shell" morphology, with the silica sol forming a well-defined monolayer surrounding the nanocomposite cores. Thus these ESI results provide direct verification of the two types of nanocomposite morphologies that were previously only inferred on the basis of X-ray photoelectron spectroscopy and aqueous electrophoresis studies. Moreover, ESI also allows the unambiguous identification of a minor population of polystyrene/silica nanocomposite particles that are not encapsulated by silica shells. The existence of this second morphology was hitherto unsuspected, but it is understandable given the conditions employed to synthesize these nanocomposites. It appears that ESI is a powerful technique for the characterization of colloidal nanocomposite particles.  相似文献   

9.
本文用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱和电化学等技术研究了直接甲酸燃料电池(DFAFC)中Vulcan XC-72炭黑载Ir(Ir/XC)和大孔炭载(Ir/MC)催化剂对氧还原的电催化性能和抗甲酸的能力。发现Ir/MC催化剂对氧还原的电催化性能要优于Ir/XC催化剂,氧起始还原电位比在Ir/XC催化剂上正移0.1V,极限电流密度比在Ir/XC催化剂上大30%左右。由于Ir/MC和Ir/XC催化剂的Ir粒子平均粒径和相对结晶度相似,因此,这只能归结于MC有大的孔径和孔率及高的石墨化程度。另外2种催化剂都有很好的抗甲酸能力。因此MC是一种比XC更好的催化剂的炭载体。  相似文献   

10.
Cobalt-containing mesoporous materials that have been prepared using different procedures have been comparatively characterized by transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM/EDS), extended X-ray absorption fine structure spectroscopy (EXAFS), X-ray absorption near edge spectroscopy (XANES), and ultraviolet-visible (UV-vis), near-infrared (NIR), and mid-infrared (mid-IR) spectroscopies, and the results provide new insights into the local environment and properties of cobalt in this type of material. TEM/EDS analyses have shown that tetraethyl orthosilicate (TEOS) may be less appropriate as a silicon source during the syntheses of cobalt-containing mesoporous materials, because the distribution of cobalt throughout the framework may become uneven. EXAFS has been determined to be the most suitable method for direct verification of framework incorporation, by identifying silicon as the backscatterer in the second shell. Such a direct verification may not be obtained using UV-vis spectroscopy. From EXAFS analyses, it is also possible to distinguish between surface-bound and framework-incorporated cobalt. There is a good agreement between the results obtained from XANES and UV-vis regarding the coordination symmetry of cobalt in the samples. The presence of cobalt in the silica framework has been determined to create Lewis acid sites, and these acid sites are suggested to be located at tetrahedral cobalt sites at the surface.  相似文献   

11.
High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.  相似文献   

12.
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.  相似文献   

13.
Two types of crosslinked polyurethanes (PU) have been synthesized: (a) PU crosslinked by metal ions (Cu2+ and Co2+), and (b) PU crosslinked by the complexes of metals with crown ether. Using X-ray scattering under small and wide angles the peculiarities of the structure of networks have been investigated. It was found that PU crosslinked by the metal crown ether complexes have a looser structure because of the bulky crosslink and diminished molecular mobility of the chains between two crosslinks, as was proven by the dielectric spectroscopy method. The X-ray and IR data have allowed proposing a scheme of the structure of the crosslinked PU with various types of crosslinks. The structures discovered may be considered as similar to metal catenandes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1379–1386, 1998  相似文献   

14.
In order to develop a novel and high-performance catalytic material for direct methanol fuel cells(DMFC), molybdenum oxide as a co-catalyst with Pt on multi-walled carbon nanotubes which were modified by titanium dio-xide(denoted as CNTs@TiO2) was investigated. The physicochemical characterizations of the catalysts were carried out via X-ray diffraction(XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Cyclic voltammetry(CV) showed that the CO-tolerance performance incre...  相似文献   

15.
Ternary Ag nanoparticles (NPs)@polyoxometalate (POM)/reduced graphene oxide (rGO) nanohybrids were prepared by a facile photoreduction method, using POM as the photocatalyst, reducing and bridging molecules. The structure of the nanohybrids was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, etc. Most importantly, both the rotating disk electrode and rotating ring-disk electrode tests indicated that the Ag NPs@POM/rGO nanohybrids exhibited excellent electrocatalytic activity towards oxygen reduction reaction via a direct four-electron transfer pathway due to the synergistic effect of Ag NPs and rGO.  相似文献   

16.
Tungstate sulfuric acid (TSA) was prepared, characterized, and applied for direct synthesis of novel and known benzimidazoles through a condensation reaction of o-phenylenediamines with orthoesters under solvent-free conditions. TSA was characterized by powdered X-ray diffraction (XRD), X-ray fluorescence (XRF), and FTIR spectroscopy. This novel and eco-friendly method is very cheap and has many advantages such as excellent yields, recyclable and eco-friendly catalyst, and simple work-up procedure.  相似文献   

17.
A method to obtain previously unknown layered structure composed of stacks of perforated graphene sheets is developed. The method consists in the thermal decomposition of graphite oxide in the concentrated H2SO4 and H3PO4 medium. In order to confirm the presence of holes in graphene layers, a large set of chemical and physicochemical analysis methods are applied. Based on a new matrix, treated thermally and chemically, layered compounds are obtained: oxide, fluoride, and fluoroxide of two types. The obtained compounds are analyzed by transmission electron microscopy, infrared absorption spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and powder X-ray diffraction.  相似文献   

18.
《Journal of Energy Chemistry》2017,26(6):1245-1251
Different weights of amorphous Ni–P alloy with same P contents were electrodeposited on nickel plate with same area used as cathode for hydrogen evolution reaction(HER). The amorphous Ni–P alloy coatings were characterized for their surface morphology and composition through Scanning electron microscopy(SEM) and Energy dispersive X-ray spectroscopy(EDS) techniques, X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) analysis. The electrocatalytic activity for HER in alkaline medium is determined by linear scan voltammetry(LSV) and a relationship between HER activity and capacitance is established. The capacitance varies with the loading of the Ni–P on Ni plate but the activity for HER is directly proportional to the capacitance in alkaline and vice versa. 3#Ni–P/Ni containing 3.85 mg Ni–P alloy with highest capacitance performs the best catalytic activity. This work provides direct evidence to explore the capacitance influence on the electrocatalystic activity for the HER.  相似文献   

19.
The frontier electronic structures of a series of organic dye molecules containing a triphenylamine moiety, a thiophene moiety and a cyanoacrylic acid moiety have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant photoelectron spectroscopy (RPES). The experimental results were compared to electronic structure calculations on the molecules, which are used to confirm and enrich the assignment of the spectra. The approach allows us to experimentally measure and interpret the basic valence energy level structure in the dye, including the highest occupied energy level and how it depends on the interaction between the different units. Based on N 1s X-ray absorption and emission spectra we also obtain insight into the structure of the excited states, the molecular orbital composition and dynamics. Together the results provide an experimentally determined energy level map useful in the design of these types of materials. Included are also results indicating femtosecond charge redistribution at the dye/TiO(2) interface.  相似文献   

20.
We present experimental and theoretical evidence that varying the local environment and physical structure of dried DNA has a direct impact on its electronic structure. By preparing samples of DNA in various solutions, it was possible to alter the type of ions present during the production of the DNA samples. These variations resulted in differences in the local chemical environment of the dried DNA molecules. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) were used to probe the variations in the electronic structure of DNA samples. DFT calculations of a stack of 10 adenine (A)-thymine (T) nucleobase pairs show that slight structural variations in stacking height have a direct influence on the electronic structure and result in changes to the HOMO-LUMO gap. The effects of these differences in the local environment on the electronic structure are discussed and are related to the results of conductivity measurements of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号