首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
A radial moment analysis has been performed for the Hartree–Fock molecular orbitals of the nitrogen molecule. The objective of the analysis was to determine the extent of isovalent hybridization in even and odd sigma molecular orbitals. The radial moment analysis for the LC -SCF -AO fragments of the 2σg, 2σu, and 3σg molecular orbitals substantiates Mulliken's earlier conjecture concerning promotion into 3s atomic orbitals for the 3σg molecular orbital. The concept of free isovalent hybridization is discussed in terms of the atomic orbital shape defined by the extracted moments.  相似文献   

2.
The geometries, relative conformational energies, and dipole moments of mono and polychlorosilanes have been calculated using ab initio molecular orbital (MO) theory. Calculations at the HF/3–21G(*) level, with the exception of dipole moments, give reasonable agreement with experimental data. A new MM2 force field for chlorosilanes, which includes terms for bond length shortening and bond angle compression due to the attachment of electronegative Cl atoms, has been developed on the basis of experimental and ab initio results. The new force field is generally successful in predicting structural parameters, but is unable to reproduce the dipole moments of several model systems. While dipole moment predictions are not the authors' main interest, this failure defines a shortcoming in the MM2 method. The new parameters have been applied to problems in the prediction of stereochemistries of cyclic systems, and compared with experimental results where data are available.  相似文献   

3.
Ab initio molecular orbital theory and density functional theory calculations have been carried out on dimethoxymethane as a model for the anomeric effect. We optimized various conformations of dimethoxymethane using Gaussian 92 at the MP2/6-311 + + G**, MP2/DZP + Diffuse, MP2/6-31G**, and Becke3LYP/6-31G** levels of theory. These methods were evaluated based on their performance in reproducing structures and energies of dimethoxymethane when compared to experiment. This study also examined the structure and energy of dimethoxymethane as a function of dihedral angles for examining the anomeric effect at the MP2/6-31G** and Becke3LYP/6-31G** levels of theory. These calculations are qualitatively consistent with the anomeric effect observations in carbohydrates and with earlier calculations. Quantitative comparisons with earlier results reveal that dimethoxymethane has lower total energies, smaller rotational barriers, and shorter bond lengths than was previously determined. The Becke3LYP calculations were also compared to the MP2 results. The density functional theory findings show that the minimum energy structures correspond well with experimental and MP2 data. The total and relative energies from molecular orbital theory and density functional theory vary to some extent. Contour plots of the relative energies of dimethoxymethane were evaluated and compared to a relative energy contour plot determined by MM3. The contour plots were similar, showing slightly larger changes in energies for the MP2 results than for the Becke3LYP results, which in turn were slightly larger than the MM3 results. Density functional theory calculations are an excellent alternative method of calculation due to increased speed and reliable accuracy of the density functional calculations. These results will serve as a benchmark for modelling the anomeric effect in carbohydrates. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Vibrational transition dipole moments and absorption band intensities for the ground state of formaldehyde, including the deuterated isotopic forms, are calculated. The analysis is based on ab initio SCF and CI potential energy and dipole moment surfaces. The formalism derives from second-order perturbation theory and involves the expansion of the dipole moment in terms of normal coordinates, as well as the incorporation of point group symmetry in the selection of the dipole moment components for the allowed transitions. Dipole moment expansion coefficients for the three molecule-fixed Cartesian coordinates of formaldehyde are calculated for internal and normal coordinate representations. Transition dipole moments and absorption band intensities of the fundamental, first overtone, combination, and second overtone transitions are reported. The calculated intensities and dipole moment derivatives are compared to experiment and discussed in the context of molecular orbital and bond polarization theory.  相似文献   

5.
The CNDO/INDO molecular orbital formalism introduced in the preceding paper has been applied to a large number of atom combinations up to bromine under the inclusion of the first transition metal series. The results are compared with experimental data (geometries, ionization potentials, dipole moments) or with the results of sophisticatedab initio calculations (one electron energies, net charges, atomic populations). The semiempirical model reproduces for a wide range of molecules the experimental andab initio data with remarkable success.  相似文献   

6.
Much attention has been paid to the role of vortices in the magnetic response properties of superconductors, but less so for molecular systems. Here we present a theoretical analysis on nanographenes subject to a strong homogeneous magnetic field. The analysis is based on the simple Hückel-London model, for which we derive the topological definition of vorticity. The results are confirmed by a more elaborate model that includes nonnearest neighbor interaction, the explicit presence of nuclei and all terms due to the magnetic field. We find that due to frontier orbital intersections, large changes in magnetic dipole moments occur. Orbital energy minima and maxima can be related to change of vortex patterns with flux.  相似文献   

7.
8.
9.
A molecular surface is introduced to divide interior electron densities from exterior electron densities (EED). The radial distribution of EED (RADEED) is defined for each molecular orbital as a function of the distance from the molecular surface. Logarithmic plots of RADEED for NH3 using various basis sets in ab initio MO calculations revealed some important features: (i) the Hartree-Fock limit for the orbital function tail may be suggested and thus qualities of basis sets can be discussed, and (ii) the slope of the curve shows the decay rate of the orbital which can be compared with the curve derived from the theoretical behavior of the long-range asymptotic form involving either the lowest ionization potential or the orbital energy of the highest occupied orbital.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

10.
Summary. Parameters of the formalism [1–6] describing spin crossover in the solid state have been defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance Lennard-Jones and electric dipole–dipole potentials have been used whereas in ionic systems Lennard-Jones and electric point-charge potentials have been used. Electric dipole–dipole interaction of neutral complexes brings about a positive excess energy controlled by the difference of electric dipole moments of HS and LS molecules. Differences of the order of Δμ = 1–2 D cause an abrupt spin crossover in systems with T1/2 = 100–150 K. Magnetic coupling contributes both to the excess energy and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic systems in the absence of specific interactions are characterised by very small excess energies corresponding to practically linear van’t Hoff plots. Detectable positive and negative excess energies in these systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO–LUMO overlap in HS–LS pairs can bring about a nontrivial variation of the shape of transition curves. Examples of regression analysis of experimental transition curves in terms of molecular potentials are given.  相似文献   

11.
Parameters of the formalism [1–6] describing spin crossover in the solid state have been defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance Lennard-Jones and electric dipole–dipole potentials have been used whereas in ionic systems Lennard-Jones and electric point-charge potentials have been used. Electric dipole–dipole interaction of neutral complexes brings about a positive excess energy controlled by the difference of electric dipole moments of HS and LS molecules. Differences of the order of Δμ = 1–2 D cause an abrupt spin crossover in systems with T1/2 = 100–150 K. Magnetic coupling contributes both to the excess energy and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic systems in the absence of specific interactions are characterised by very small excess energies corresponding to practically linear van’t Hoff plots. Detectable positive and negative excess energies in these systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO–LUMO overlap in HS–LS pairs can bring about a nontrivial variation of the shape of transition curves. Examples of regression analysis of experimental transition curves in terms of molecular potentials are given.  相似文献   

12.
We studied the midgap levels appearing in the photoexcited conductive polymers such as trans- and cis-polyacetylenes, poly(p-phenylene), polypyrrole, and polyacene based on the molecular orbital analysis. The midgap levels are constructed from the transformation of the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the ground state. As the result of the localization of the wave functions associated with these midgap levels, large polarization is induced between adjacent carbon atoms. Based on the examination of the energy gap between the two midgap levels, the polymers with a nondegenerate ground state such as cis-polyacetylene, poly(p-phenylene), and polypyrrole would show no sizable photoconductivities.  相似文献   

13.
Potential energy surface for methyl fluoride dimer has been studied theoretically with ab initio molecular orbital method, using a 4-31G basis set. Dimer dissociation energies, Mulliken electronic populations, and dipole moments were obtained.  相似文献   

14.
STO-3G minimal basis set ab initio molecular orbital calculations were employed to study the electronic structure and conformational preferences in furan-2-N-methylmethyleneimide ( 1 ) and pyrrole-2-N-methylmethyleneimide ( 2 ). The theoretical results were examined by comparison with the parent molecular systems through a population analysis and molecular orbital interactions considerations. The OCCN-trans and the NCCN-cis forms were found to be the most stable structures in 1 and 2 , respectively. Comparisons were made with available experimental data. The theoretical results indicate thatπ-electron interactions and molecular orbital interactions are not significant factors in determining the conformational preferences which most likely depend on dipole-dipole interactions.  相似文献   

15.
Semiempirical molecular orbital treatment at the level of PM3 type calculations has been performed on the Hückel-type monostannacyclacenes having tin atom at the fusion and periposition of arenoid rings. The effect of tin substitution is found to be moderately destabilizing, but it becomes less pronounced in larger systems. The heats of formation values of fusion- and peri-type monostannacyclacenes, in some cases, are more endothermic and, in some cases, less endothermic as compared to the cyclacenes having the same n (the number of arenoid rings) value. The frontier molecular orbital energies, cryptoannulenic effects, geometries, and dipole moments of these structures have also been examined.  相似文献   

16.
In the present work, three-dimensional quantitative structure–activity relationship (3-D QSAR) studies on a set of 70 anthranilimide compounds has been performed using docking-based as well as substructure-based molecular alignments. This resulted in the selection of more statistically relevant substructure-based alignment for further studies. Further, molecular models with good predictive power were derived using CoMFA (r 2?=?0.997; Q 2?=?0.578) and CoMSIA (r 2?=?0.976; Q 2?=?0.506), for predicting the biological activity of new compounds. The so-developed contour plots identified several key features of the compounds explaining wide activity ranges. Based on the information derived from the CoMFA contour maps, novel leads were proposed which showed better predicted activity with respect to the already reported systems. Thus, the present study not only offers a highly significant predictive QSAR model for anthranilimide derivatives as glycogen phosphorylase (GP) inhibitors which can eventually assist and complement the rational drug-design attempts, but also proposes a highly predictive pharmacophore model as a guide for further development of selective and more potent GP inhibitors as anti-diabetic agents.  相似文献   

17.
18.
The MCD spectra of meso-triarylsubporphyrins show a sign anomaly which is correlated with the acceptor properties of the aryl substituent. From the spectra, magnetic moments of the excited states are determined. In the context of a simplified orbital model, the sign change is attributed to the quenching of the magnetic moment of the LUMO by acceptor orbitals of the substituent. The actual calculation of this moment presents a major challenge to computational methods. It is shown that wave function techniques based on CASSCF underestimate the covalency effects that are responsible for the quenching. In contrast, a CI method based on DFT orbitals yields excellent results, which fully support the orbital model.  相似文献   

19.
Arylenevinylene‐based π‐conjugated polymers containing imidazolium cationic units in the main chain and their model compounds were synthesized and characterized in terms of optical and electrochemical properties. 9,9‐Bisoctylfluorene, 2,5‐bisdodecyloxybenzene, and 3‐dodecylthiophene were introduced as arylene units with different donor characteristics to evaluate the effect on the highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap energy. The UV–vis and fluorescence spectra of cationic polymers and model compounds with iodide counter anion exhibited a significant blue shift with respect to the parent neutral molecules. X‐ray single crystal analysis for model compounds revealed that the effective π‐conjugation length of cationic model compounds decreased compared to the neutral model compounds by means of twisted conformation directed by CH‐π interactions between N‐methyl groups of imidazolium and neighboring aryl units. The cyclic voltammetry measurement suggested the negative shift of LUMO levels by the conversion of imidazole to imidazolium, indicating the electron‐accepting characteristics of cationic imidazolium unit. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The importance of the choice of basis set, electronic relaxation, intra- and interatomic processes and vibrational effects related to the development of an acceptable ab initio molecular orbital model for the calculation of X-ray transition probabilities for molecules are examined with special reference to the carbon monoxide molecule. The length and velocity forms of the dipole transition operator have been used in the assessment. To calculate reliable intensities it is necessary to account for electronic relaxation effects and include interatomic contributions. Since some electronic transition moments show a strong dependence on bondlength variation the use of the adiabatic approximation separating electronic and vibrational effects must be used with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号