首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动态冰浆流动特性分析   总被引:1,自引:1,他引:0  
阐述了动态冰浆流变性质的Bingham模型,并利用该模型计算了冰浆在层流和湍流状态下的摩擦因子,得到了冰浆在水平直管内流动的压降曲线,分别就层流和湍流情形分析了各种参数对流动压降的影响。  相似文献   

2.
基于欧拉法建立了冰浆流动的混合模型,对冰浆在90°弯管内的流动特性进行了数值模拟研究,获得了弯管内冰浆的流场和冰晶颗粒的运动轨迹,探讨了弯管管径、曲率半径及冰浆的流速、浓度参数对弯管内冰浆压降的影响,并对弯管压降的模拟结果与实验结果进行对比,两者吻合较好。结果表明:在计算参数范围内,弯管压降随冰浆流速、浓度及弯管曲率半径的增大而增大,随弯管管径的增大而减小;冰浆在弯管内流动形成二次流现象,两个漩涡区域出现在弯管截面两侧;漩涡导致部分冰晶颗粒的运动轨迹发生改变,并使其向弯管下方的负压区聚集,增大了冰晶颗粒的碰撞几率。  相似文献   

3.
综述冰浆输送过程和在换热器中的流动换热特性研究现状。目前对冰浆流动特性研究主要是为了解决输送冷流体过程中的压降、摩阻系数等问题,输送途径主要是直管、弯管,可控因变量包括含冰率、管道直径、冰浆粘度、流速、Re数等参数。此外,还对冰浆在水平直管中流动情况进行了数值模拟,提出了最值冰浆浓度和第一临界速度、第二临界速度等参数,并推测冰浆流动换热应从三段进行考虑。冰浆在换热器中的流动换热过程与管道输送相比,通道结构更复杂导致阻力损失变大、换热增强、相变程度大,同时还要考虑固体颗粒与流体之间的耦合作用,因此目前的研究主要停留在实验阶段,在实验基础上进行半经验公式的推导。基础性理论研究主要涉及两相流动、颗粒力学和相变潜热三方面。此外,对未来研究方向提出几点建议,尤其是应从微观颗粒受力和晶体结构角度探讨冰浆的流动换热情况,脱离原有单相流体研究方式,冰浆颗粒流动至少分三段研究。  相似文献   

4.
为加深对动态冰浆的认识,文章介绍了动态冰浆的制取方式,着重讨论动态冰浆在建筑空调、食品加工、医疗保护以及其他场合的应用.通过与冷冻水及其它类型冰的比较分析,表明动态冰浆在蓄冷密度、流动性与传热性能等方面具有独特的技术优势.  相似文献   

5.
冰浆具有良好的流动性、传输性以及传热性能,在电力削峰填谷上有着很大的应用前景。文中主要对冰浆制取方式的优劣性进行对比,着重介绍了国内外冰浆储存与融化的研究进展,对冰浆流动换热的动态特性进行分析,并根据研究现状对下一步研究工作进行了展望。  相似文献   

6.
动态冰浆是一种固-液两相流体。文中采用理论模型研究了动态冰浆在非均质流动情况下的冰晶浓度分布,分析了冰晶浓度、冰浆流速、管道直径、冰晶粒径大小对冰浆的动态粘度的影响。分析表明:在高冰晶浓度、低流速情况下,冰浆的平均粘度不仅和冰晶浓度和载流溶液的粘度相关,还受到冰浆流速、管道直径和冰晶颗粒大小的影响。  相似文献   

7.
张曼  杨帆  方贵银 《低温与超导》2007,35(4):338-340
动态冰浆由于具有较强的蓄能和传热能力,日益受到人们的重视。文中建立了动态冰浆传热特性的数理模型,并利用已知的载流溶液和冰晶的物性参数,得到了动态冰浆在水平直管、等热流加热条件下的传热系数,根据计算结果,分析了传热系数随着冰浆浓度的变化的规律和冰浆流速和管径对动态冰浆传热性能的影响。  相似文献   

8.
流动沸腾系统中,压降振荡是系统不稳定性的主要型式之一。过载条件下流动沸腾压降振荡缺乏研究。本文采用数值仿真方法,对过载条件下管内流动沸腾的压降振荡特性进行了研究。建立了不同重力条件下压降振荡计算的数学模型,基于此,对过载条件下R134a在2.168 mm水平管内的压降振荡进行了仿真分析,得出了1.41 g、3.16 g(g=9.8 m/s^2)过载条件下的压降振荡特性及其引起的流量振荡、流体温度振荡和壁温振荡,并与对常重力(1 g)下的压降振荡特性进行了对比。结果表明,随着重力增加,流动特性N曲线的负斜率段缩短;一定条件下,当过载增加时,系统从稳定状态趋于不稳定状态。  相似文献   

9.
在热流密度3.54 W·cm~(-2)到40.7 W·cm~(-2),雷诺数由278到6502,出口干度0到1的工况范围内对R134a在微尺度单通道和多通道内流动沸腾压降特性进行了可视化实验研究。在相同工况时,单通道压降小于多通道压降;随热流密度和出口干度的增加,多通道压降增长范围小于单通道压降增长范围,通过可视观察,多通道内流动沸腾不稳定流动现象较单通道更为明显,并且多通道平均压降和实时压降波动范围更大。结合可视实验观察,多通道内压降高于单通道压降的主要原因为不稳定流动现象造成,并对产生不稳定流动的因素和造成压降升高的原因进行了分析。  相似文献   

10.
TBAB水合物浆体是一种有较好应用前景的蓄冷材料,作为空调的载冷剂,可以大幅度降低输送功耗.本文实验研究了质量分数为0~19.2%的TBAB水合物浆体在内径为2.0 mm和4.5 mm圆直管中的流动特性.通过测量水合物浆体的流量和压降得到其流动曲线,采用幂律模型描述浆体的流动特性,得到浆体的本构方程,实验测得的摩擦系数与关联式有较好的吻合。  相似文献   

11.
为了揭示阀门开度对泵作透平循环系统启动特性的影响,本文对泵作透平循环系统在五种阀门开度情形下进行了三维黏度非定常流动的数值计算,得到了启动过程中各个过流部件的外特性和内流特性,同时还借助于熵产分析和Q准则深入分析了管路系统内各部件的能量损失情况。结果表明:随着阀门开度增大,泵作透平叶轮流域与阀门流域内涡与熵产的分布逐渐增加,即能量损失增大。泵作透平进出口压降、流量、扬程均随着阀门的增大而增大,但阀门开度大小无线性关系。  相似文献   

12.
提出了深孔钻直冷方案用于优化 ITER 极向场 PF6 磁体支撑冷却系统设计。采用有限元分析方法, 从换热效率、流体压降、结构强度等方面对流道数量和孔径进行了最优化设计。结果表明,9 条直径 10mm 的冷 却流道可以达到最佳的冷却效果。同时,在服役环境下支撑部件的机械强度和温度分布、流体的运行参数均能满 足 ITER 磁体支撑的设计要求。目前所有 PF6 磁体支撑已完成了制造和检验,并顺利交付 ITER 组织。   相似文献   

13.
热管内蒸发和凝结时工质会径向迁移,导致蒸汽流动特性与管流有很大不同。对热管内蒸汽流动的速度分布和压降特性进行了分析,比较了现有热管蒸汽压降的计算方法。同时考虑蒸汽流动时黏性力和惯性力的作用,提出了计算蒸汽流动速度和压降的改进方法,消除了前人方法应用范围的限制。利用此计算方法,蒸汽速度分布随径向雷诺数变化较大。与钠热管的数值模拟结果对比表明,此计算方法应用范围广,准确度较高。  相似文献   

14.
作为中国聚变工程实验堆(CFETR)候选包层之一的水冷包层(WCCB),拟采用不同尺寸的两元混合增殖球床以增加球床的填充率,从而满足氚增殖比(TBR)要求。采用离散元方法(DEM)建立了满足中子学要求的CFETR水冷包层两元球床填充结构,通过CFD计算分析获取了氦气在球床颗粒间隙之间的流动特性,包括孔隙率分布、速度分布和压降等。  相似文献   

15.
本文对几种不同几何模型的低波纹通道进行了传热及阻力性能数值研究,在一定的流速范围内得出了传热和阻力的特性曲线.分析了通道高度、波纹波峰高度、通道宽度对流动与换热的影响.结果表明,通道高度越小,换热越强,同时压降也增加;波纹波峰高度越大,换热加强,压降也相应增加;通道宽度越大,换热几乎不变,但压降随之降低.  相似文献   

16.
本文对水平放置的内径为40 mm的钢管和有机玻璃管内的油水两相流动摩擦压降特性进行了比较实验研究.从实验方面含水率和混合流速等因素对钢管和有机玻璃管内油水两相油滴分散流摩擦阻力压降规律的影响进行了详细研究.实验结果表明:含水率和混合流速是影响压降的主要因素;在本实验范围内,除了分层流区域以外,有机玻璃管内的油水两相摩擦阻力压力梯度大于钢管内油水两相摩擦阻力压力梯度.  相似文献   

17.
相变乳状液的流变和传热性能研究   总被引:17,自引:2,他引:17  
针对新型O/W相变乳状液的非牛顿流变特性和在园管中发生相变前后的传热性能进行了测试和分析,所得结果表明它作为一种全新的蓄冷介质在对流传热方面具有性能优势.对经测试得出的乳状液主要流变参数随乳液浓度和温度的变化规律以及它在管内的对流传热特性作了分析和讨论,为新型实用蓄冷装置的设计提供了基本的依据.  相似文献   

18.
采用旋转流变仪研究了不同温度下NLGI 00锂基润滑脂流变特性的变化规律。基于润滑脂热流变实验结果,建立了润滑脂圆管流动的计算模型,并采用Fluent软件对润滑脂圆管流动进行了数值模拟。得出各温度下润滑脂圆管流动过程中压力、速度和表观黏度分布情况。揭示了热流变对润滑脂圆管流场的影响规律及变化机理。  相似文献   

19.
交变流动蓄冷器的压降因子和阻力系数对实际的工程计算、数值模拟及制冷机的设计有重要的意义 ,然而对低温交变流动蓄冷器的阻力特性一直缺乏系统的实验结果。文中给出了低温交变流动蓄冷器的压降因子及液氮温区交变流动蓄冷器摩擦系数的拟合公式 ,并为常温下的实验对比 ,对低温蓄冷器的设计提供了参考  相似文献   

20.
通过计算流体力学(CFD)数值模拟方法,对氚增殖剂球床内部的氦气流动特性进行了初步研究。分析了球床流通长度和流通截面对提氚气体压降的影响,获得了不同入口流速下规则堆积球床和随机堆积球床的压降和阻力系数。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号