首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chai Wah Wu 《Discrete Mathematics》2010,310(21):2811-2814
Normalized Laplacian matrices of graphs have recently been studied in the context of quantum mechanics as density matrices of quantum systems. Of particular interest is the relationship between quantum physical properties of the density matrix and the graph theoretical properties of the underlying graph. One important aspect of density matrices is their entanglement properties, which are responsible for many nonintuitive physical phenomena. The entanglement property of normalized Laplacian matrices is in general not invariant under graph isomorphism. In recent papers, graphs were identified whose entanglement and separability properties are invariant under isomorphism. The purpose of this note is to completely characterize the set of graphs whose separability is invariant under graph isomorphism. In particular, we show that this set consists of K2,2 and its complement, all complete graphs and no other graphs.  相似文献   

2.
The article is a creative compilation of certain papers devoted to the graph isomorphism problem, which have appeared in recent years. An approach to the isomorphism problem is proposed in the first chapter, combining, mainly, the works of Babai and Luks. This approach, being to the survey's authors the most promising and fruitful of results, has two characteristic features: the use of information on the special structure of the automorphism group and the profound application of the theory of permutation groups. In particular, proofs are given of the recognizability of the isomorphism of graphs with bounded valences in polynomial time and of all graphs in moderately exponential time. In the second chapter a free exposition is given of the Filotti-Mayer-Miller results on the isomorphism of graphs of bounded genus. New and more complete proofs of the main assertions are presented, as well as an algorithm for the testing of the isomorphism of graphs of genus g in time O(vO(g)), where v is the number of vertices. In the third chapter certain extended means of the construction of algorithms testing an isomorphism are discussed together with probabilistically estimated algorithms and the Las Vegas algorithms. In the fourth chapter the connections of the graph isomorphism problem with other problems are examined.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 118, pp. 83–158, 1982.  相似文献   

3.
This paper deals with the isomorphism problem of directed path graphs and rooted directed path graphs. Both graph classes belong to the class of chordal graphs, and for both classes the relative complexity of the isomorphism problem is yet unknown. We prove that deciding isomorphism of directed path graphs is isomorphism complete, whereas for rooted directed path graphs we present a polynomial-time isomorphism algorithm.  相似文献   

4.
This paper develops some properties of simple blocks—block graphs which are determined up to isomorphism by the degrees of their vertices. It is first shown that if G is a simple block graph on six or more points, then G cannot be minimal or critical and must contain a triangle—have girth three.Then the most useful necessary conditions for a graph to be simple are established; if a graph is simple, it has diameter less than or equal to three and dradius less than or equal to two.  相似文献   

5.
The object-oriented approach to modelling has recently made possible to build models of large-scale real systems. However, the resulting system of equations is generally a nonlinear DAE (Differential Algebraic Equations) system of large dimension, which must be reduced in some way to make it tractable for numerical solutions. A way to do this is automatic symbolic tearing, which aims at splitting the DAE system into two parts: a core consisting of a reduced implicit DAE system and a set of explicit assignments. The problem is here dealt with by a graph theoretic approach, first proving the NP-completeness in the general case, then formulating the problem with reference to a bipartite graph and finally defining an efficient and flexible algorithm for automatic tearing. It is also shown how the proposed algorithm can easily incorporate both general and domain-specific heuristic rules, and can also be used to deal with equations in vector form. The application to serial multibody systems is considered as a significant example.  相似文献   

6.
Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph(Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of Aut(Γ) isomorphic to G are conjugate in Aut(Γ). A semi-Cayley graph(also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits(of equal size). In this paper, we introduce the concept of SCI-graph(semi-Cayley isomorphism)and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.  相似文献   

7.
Permutation diagrams have been used in circuit design to model a set of single point nets crossing a channel, where the minimum number of layers needed to realize the diagram equals the clique number ω(G) of its permutation graph, the value of which can be calculated in O(nlogn) time. We consider a generalization of this model motivated by “standard cell” technology in which the numbers on each side of the channel are partitioned into consecutive subsequences, or cells, each of which can be left unchanged or flipped (i.e., reversed). We ask, for what choice of flippings will the resulting clique number be minimum or maximum. We show that when one side of the channel is fixed (no flipping), an optimal flipping for the other side can be found in O(nlogn) time for the maximum clique number, and that when both sides are free this can be solved in O(n2) time. We also prove NP-completeness of finding a flipping that gives a minimum clique number, even when one side of the channel is fixed, and even when the size of the cells is restricted to be less than a small constant. Moreover, since the complement of a permutation graph is also a permutation graph, the same complexity results hold for the stable set (independence) number. In the process of the NP-completeness proof we also prove NP-completeness of a restricted variant of a scheduling problem. This new NP-completeness result may be of independent interest.  相似文献   

8.
Matroid theory has been applied to solve problems in generalized assignment, operations research, control theory, network theory, flow theory, generalized flow theory or linear programming, coding theory, and telecommunication network design. The operations of matroid union, matroid partitioning, matroid intersection, and the theorem on the greedy algorithm, Rado's theorem, and Brualdi's symmetric version of Rado's theorem have been important for some of these applications. In this paper we consider the application of matroids to solve problems in network synthesis. Previously Bruno and Weinberg defined a generalized network, which is a network based on a matroid rather than a graph; for a generalized network the duality principle holds whereas it does not hold for a network based on a graph. We use the concept of the generalized network to formulate a solution to the following problem: What are the necessary and sufficient conditions for a singular matrix of real numbers, of order p and rank s, to be realizable as the open-circuit resistance matrix of a resistance p-port network. A simple algorithm is given for carriyng out the synthesis. We then present a number of unsolved problems, included among which is what could be called the four-color problem of network synthesis, namely, the resistance n-port problem.  相似文献   

9.
The paper studies the algorithmic complexity of subproblems for satisfiability in positive integers of simultaneous divisibility of linear polynomials with nonnegative coefficients. In the general case, it is not known whether this problem is in the class NP, but that it is in NEXPTIME is known. The NP-completeness of two series of restricted versions of this problem such that a divisor of a linear polynomial is a number in the first case, and a linear polynomial is a divisor of a number in the second case is proved in the paper. The parameters providing the NP-completeness of these problems have been established. Their membership in the class P has been proven for smaller values of these parameters. For the general problem SIMULTANEOUS DIVISIBILITY OF LINEAR POLYNOMIALS, NP-hardness has been proven for its particular case, when the coefficients of the polynomials are only from the set {1, 2} and constant terms are only from the set {1, 5}.  相似文献   

10.
In traditional edge searching one tries to clean all of the edges in a graph employing the least number of searchers. It is assumed that each edge of the graph initially has a weight equal to one. In this paper we modify the problem and introduce the Weighted Edge Searching Problem by considering graphs with arbitrary positive integer weights assigned to its edges. We give bounds on the weighted search number in terms of related graph parameters including pathwidth. We characterize the graphs for which two searchers are sufficient to clear all edges. We show that for every weighted graph the minimum number of searchers needed for a not-necessarily-monotonic weighted edge search strategy is enough for a monotonic weighted edge search strategy, where each edge is cleaned only once. This result proves the NP-completeness of the problem.  相似文献   

11.
We consider the isomorphism problem for graphs in classes which, together with any graph, contain its connected induced subgraphs and graphs obtained by successive identifications of endpoints of edges. The main result is to establish sufficient conditions for the existence of a polynomial time algorithm testing graphs of such classes for isomorphism. It is shown that classes failing to satisfy these conditions are isomorphism-complete.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akad. Nauk SSSR, Vol. 174, pp. 147–177, 1988.  相似文献   

12.
A graph is called a 1-triangle if, for its every maximal independent set I, every edge of this graph with both endvertices not belonging to I is contained exactly in one triangle with a vertex of I. We obtain a characterization of 1-triangle graphs which implies a polynomial time recognition algorithm. Computational complexity is establishedwithin the class of 1-triangle graphs for a range of graph-theoretical parameters related to independence and domination. In particular, NP-completeness is established for the minimum perfect neighborhood set problem in the class of all graphs.  相似文献   

13.
Several isomorphism classes of graph coverings of a graph G have been enumerated by many authors (see [3], [8]–[15]). A covering of G is called circulant if its covering graph is circulant. Recently, the authors [4] enumerated the isomorphism classes of circulant double coverings of a certain kind, called typical, and showed that no double covering of a circulant graph of valency 3 is circulant. In this paper, the isomorphism classes of connected circulant double coverings of a circulant graph of valency 4 are enumerated. As a consequence, it is shown that no double covering of a non-circulant graph G of valency 4 can be circulant if G is vertex-transitive or G has a prime power of vertices. The first author is supported by NSF of China (No. 60473019) and by NKBRPC (2004CB318000), and the second author is supported by Com2MaC-KOSEF (R11-1999-054) in Korea.  相似文献   

14.
The problem of deciding whether a rational assessment of formulas of infinite-valued ?ukasiewicz logic is coherent has been shown to be decidable by Mundici [1] and in PSPACE by Flaminio and Montagna [10]. We settle its computational complexity proving an NP-completeness result. We then obtain NP-completeness results for the satisfiability problem of certain many-valued probabilistic logics introduced by Flaminio and Montagna in [9].  相似文献   

15.
Matrix symmetrization and several related problems have an extensive literature, with a recurring ambiguity regarding their complexity and relation to graph isomorphism. We present a short survey of these problems to clarify their status. In particular, we recall results from the literature showing that matrix symmetrization is in fact NP‐hard; furthermore, it is equivalent with the problem of recognizing whether a hypergraph can be realized as the neighborhood hypergraph of a graph. There are several variants of the latter problem corresponding to the concepts of open, closed, or mixed neighborhoods. While all these variants are NP‐hard in general, one of them restricted to the bipartite graphs is known to be equivalent with graph isomorphism. Extending this result, we consider several other variants of the bipartite neighborhood recognition problem and show that they all are either polynomial‐time solvable, or equivalent with graph isomorphism. Also, we study uniqueness of neighborhood realizations of hypergraphs and show that, in general, for all variants of the problem, a realization may be not unique. However, we prove uniqueness in two special cases: for the open and closed neighborhood hypergraphs of the bipartite graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 69–95, 2008  相似文献   

16.
We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where canonical means that isomorphic graphs receive identical models. This implies that the recognition and the isomorphism problems for these graphs are solvable in logspace. For the broader class of concave-round graphs, which still possess (not necessarily proper) circular-arc models, we show that a canonical circular-arc model can also be constructed in logspace. As a building block for these results, we design a logspace algorithm for computing canonical circular-arc models of circular-arc hypergraphs. This class of hypergraphs corresponds to matrices with the circular ones property, which play an important role in computational genomics. Our results imply that there is a logspace algorithm that decides whether a given matrix has this property.Furthermore, we consider the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We show that this problem is solvable in logarithmic space for the classes of proper circular-arc, concave-round, and co-convex graphs.Note that solving a problem in logspace implies that it is solvable by a parallel algorithm of the class AC1. For the problems under consideration, at most AC2 algorithms were known earlier.  相似文献   

17.
张振坤  余敏 《数学季刊》2015,(2):308-316
The interval graph completion problem on a graph G is to find an added edge set F such that G + F is an interval supergraph with the smallest possible number of edges. The problem has important applications to numerical algebra, V LSI-layout and algorithm graph theory etc; And it has been known to be N P-complete on general graphs. Some classes of special graphs have been investigated in the literatures. In this paper the interval graph completion problem on split graphs is investigated.  相似文献   

18.
In this paper, we consider the problem of computing an optimal branch decomposition of a graph. Branch decompositions and branchwidth were introduced by Robertson and Seymour in their series of papers that proved the Graph Minors Theorem. Branch decompositions have proven to be useful in solving many NP-hard problems, such as the traveling salesman, independent set, and ring routing problems, by means of combinatorial algorithms that operate on branch decompositions. We develop an implicit enumeration algorithm for the optimal branch decomposition problem and examine its performance on a set of classical graph instances.  相似文献   

19.
LetG=(V, E) be an undirected connected graph with positive edge lengths. The vertexp-center problem is to find the optimal location ofp centers so that the maximum distance to a vertex from its nearest center is minimized, where the centers may be placed at the vertices. Kariv and Hakimi have shown that this problem is NP-hard. We will consider two modifications of this problem in which each center may be located in one of two predetermined vertices. We will show the NP-completeness of their recognition versions.  相似文献   

20.
We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) H, does it contain an induced subdivision of a prescribed digraph D? The complexity of this problem depends on D and on whether H is an oriented graph or contains 2-cycles. We announce a number of examples of polynomial instances as well as several NP-completeness results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号