首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.  相似文献   

2.
提出了一种求解非定常不可压缩纳维-斯托克斯方程(N-S方程)的新型有限元法:基于投影法的特征线算子分裂有限元法.在每一个时间层上将N-S方程分裂成扩散项、对流项、压力修正项.对流项采用多步显式格式,且在每一个对流子时间步内采用更加精确的显式特征线-伽辽金法进行时间离散,空间离散采用标准伽辽金法.应用此算法对平面泊肃叶流、方腔流和圆柱绕流进行数值模拟,所得结果与基准解符合良好.尤其对于Re=10000的方腔流,给出了方腔中分离涡发展和运动的计算结果,并发现在该雷诺数下存在周期解,表明该算法能较好地模拟流体流动中的小尺度物理量以及流场中分离涡的运动.  相似文献   

3.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The computational efficiency of three numerical schemes has been examined for the solution of a linearized system of equations resulting from the finite element discretization of a viscoelastic fluid flow problem. The first scheme is a modified frontal solver, which solves the linear system of equations directly. The other two, one based on a biconjugate gradient stabilized (BiCGStab) method and another based on a generalized minimal residual (GMRES) method, are iterative schemes. The stick-slip problem and the four-to-one contraction problem were analyzed and the viscoelastic fluid was assumed to obey the Oldroyd-B model. The two iterative schemes are superior to the direct scheme in terms of CPU time consumed and the BiCGStab scheme is even faster than the GMRES scheme. The range of convergence for both iterative schemes is compatible with that of the direct scheme.  相似文献   

5.
建立了求解二维全非线性布氏(Boussinesq)水波方程的有限差分/有限体积混合数值格式. 针对守恒形式的控制方程,采用有限体积方法并结合 MUSTA格式计算数值通量, 剩余项则采用有限差分方法求解, 采用具有总变差减小(totalvariation diminishing, TVD)性质的三阶龙格-库塔法进行时间积分.该格式具备间断捕捉、程序实现简单、数值稳定性强、海岸动边界以及波浪破碎处理方便和可调参数少等优点.利用典型算例对数值模型进行了验证,计算结果与实验数据吻合较好.  相似文献   

6.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.   相似文献   

7.
七方程可压缩多相流模型的HLLC格式及应用   总被引:1,自引:0,他引:1  
梁姗  刘伟  袁礼 《力学学报》2012,44(5):884-895
针对Saurel和Abgrall提出的两速度两压力的七方程可压缩多相流模型,改进了其数值解法并应用于模拟可压缩多介质流动问题.在Saurel等的算子分裂法基础上,根据Abgrall的多相流系统应满足速度和压力的均匀性不随时间改变的思想,推导了与HLLC格式一致的非守恒项离散格式以及体积分数发展方程的迎风格式.进一步,通过改变分裂步顺序,构造了稳健的结合算子分裂的三阶TVD龙格-库塔方法.最后通过几个一维和二维高密度比高压力比气液两相流算例,显示了该方法在计算精度和稳健性上的改进效果.   相似文献   

8.
The mild slope equation in its linear and non-linear forms is used for the modelling of nearshore wave propagation. The finite difference method is used to descretize the governing elliptic equations and the resulting system of equations is solved using GMRES-based iterative method. The original GMRES solution technique of Saad and Schultz is not directly applicable to the present case owing to the complex coefficient matrix. The simpler GMRES algorithm of Walker and Zhou is used as the core solver, making the upper Hessenberg factorization unneccessary when solving the least squares problem. Several preconditioning-based acceleration strategies are tested and the results show that the GMRES-based iteration scheme performs very well and leads to monotonic convergence for all the test-cases considered.  相似文献   

9.
比例边界有限元侧面上有任意荷载时,将侧面载荷分解成关于径向方向局部坐标的多项式函数的和,推导给出了考虑侧面载荷存在的新型形函数,并基于该形函数推导了刚度矩阵和等效节点载荷列阵.首次对比例边界有限元法求解裂纹面接触问题进行了研究,运用Lagrange乘子引入接触界面约束条件,推导给出了比例边界有限元求解裂纹面接触问题的控制方程.将裂纹面单元分为非裂尖单元和含有侧面的裂尖单元.在非裂尖单元中的裂纹面,裂纹面作为多边形单元的边界,边界上的接触力可等效到节点上,通过在节点上构造Lagrange乘子,采用点对点接触约束进行处理.对于含有侧面的裂尖单元,在整个侧面上构造Lagrange乘子的插值场,采用边对边接触约束进行处理.对三个不同的接触约束状态下的算例进行了数值计算,通过与解析解及有限元软件ABAQUS计算结果的对比,验证了本文提出的比例边界有限元点对点和边对边接触求解裂纹面接触问题的精确性与有效性.  相似文献   

10.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

11.
The governing equations of shallow water magnetohydrodynamics describe the dynamics of a thin layer of nearly incompressible and electrically conducting fluids for which the evolution is nearly two-dimensional with magnetic equilibrium in the third direction. A high-resolution central-upwind scheme is applied to solve the model equations considering non-flat bottom topography. The suggested method is an upwind biased non-oscillatory finite volume scheme which doées not require a Riemann solver at each time step. To satisfy the divergence-free constraint, the projection method is used. Several case studies are carried out. For validation, a gas kinetic flux vector splitting scheme is also applied to the same model.  相似文献   

12.
《力学快报》2022,12(3):100306
Based on strain-clustering via k-means, we decompose computational domain into clusters of possibly disjoint cells. Assuming cells in each cluster take the same strain, we reconstruct displacement field. We further propose a new way to condensate the governing equations of displacement-based finite element method to reduce the complexity while maintain the accuracy. Numerical examples are presented to illustrate the efficiency of the clustering solver. Numerical convergence studies are performed for the examples. Avoiding complexities which is common in existing clustering analysis methods, the proposed clustering solver is easy to implement, particularly for numerical homogenization using commercial softwares.  相似文献   

13.
A time-marching finite volume numerical procedure is presented for three-dimensional Euler analysis of turbomachinery flows. The proposed scheme is applied to the conservative form of the Euler equations written in general curvilinear co-ordinates. A simple but computationally efficient grid is constructed. Numerical solution results for three 3D turbine cascade flows have been presented and compared with available measurements as well as with another state-of-the-art 3D Euler analysis numerical solution in order to demonstrate the accuracy and computational efficiency of the analysis method. Also, the predicted results are compared with a 3D potential flow solver and comparison is made with the analytical solution. The proposed method is an accurate and reliable technique for solving the compressible flow equations in turbomachinery geometries.  相似文献   

14.
15.
A dual‐time implicit mesh‐less scheme is presented for calculation of compressible inviscid flow equations. The Taylor series least‐square method is used for approximation of spatial derivatives at each node which leads to a central difference discretization. Several convergence acceleration techniques such as local time stepping, enthalpy damping and residual smoothing are adopted in this approach. The capabilities of the method are demonstrated by flow computations around single and multi‐element airfoils at subsonic, transonic and supersonic flow conditions. Results are presented which indicate good agreements with other reliable finite‐volume results. The computational time is considerably reduced when using the proposed mesh‐less method compared with the explicit mesh‐less and finite‐volume schemes using the same point distributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A boundary element method for steady two‐dimensional low‐to‐moderate‐Reynolds number flows of incompressible fluids, using primitive variables, is presented. The velocity gradients in the Navier–Stokes equations are evaluated using the alternatives of upwind and central finite difference approximations, and derivatives of finite element shape functions. A direct iterative scheme is used to cope with the non‐linear character of the integral equations. In order to achieve convergence, an underrelaxation technique is employed at relatively high Reynolds numbers. Driven cavity flow in a square domain is considered to validate the proposed method by comparison with other published data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
武文华  李锡夔 《力学学报》2007,39(4):473-478
提出了一个广义对流扩散方程的混合有限元方法,方程的基本变量及其空间梯度和流量在单 元内均作为独立变量分别插值. 基于胡海昌-Washizu三变量广义变分原理结合特征线法给 出了控制方程的单元弱形式. 混合元方法采用基于一点积分方案并结合可以滤掉虚假的 数值震荡的隐式特征线法. 数值结果证明了所提出的方法可以提供和四点积分同样的数 值计算结果,并能够提高计算效率.  相似文献   

18.
通过建立弹塑性碰撞动态子结构模型, 推导了模态坐标下的控制方程,提出了模拟柔性结构碰撞激发弹塑性波传播的动态子结构方法, 并对其中的主模态的存在性和主模态截断的收敛性进行了证明. 通过对柔性杆纵向碰撞和柔性梁横向碰撞两个算例的计算, 并将计算结果与理论解和三维动力有限方法计算结果进行了对比, 验证了该方法的数值收敛性和计算碰撞弹塑性波传播的有效性.   相似文献   

19.
曹志刚 《力学季刊》2015,36(4):749-756
采用广义微分求积法(GDQM)对钢筋混凝土(RC)梁进行了准静力分析,得到了其抗静载的强度特性.首先,基于虚功原理导出了考虑钢筋和混凝土材料的非线性的RC梁准静力分析控制微分方程,并根据广义微分求积法对其离散,从而得到有限自由度的非线性代数方程组,进而采用Newton-Raphson迭代求解格式,建立了荷载增量法数值分析模型.其次,通过本文GDQM与有限元法分析结果比较,表明了新建算法的正确性;与有限元法的收敛性对比表明本文算法较有限元法有优越性.  相似文献   

20.
We present a parallel fully implicit algorithm for the large eddy simulation (LES) of incompressible turbulent flows on unstructured meshes in three dimensions. The LES governing equations are discretized by a stabilized Galerkin finite element method in space and an implicit second-order backward differentiation scheme in time. To efficiently solve the resulting large nonlinear systems, we present a highly parallel Newton-Krylov-Schwarz algorithm based on domain decomposition techniques. Analytic Jacobian is applied in order to obtain the best achievable performance. Two benchmark problems of lid-driven cavity and flow passing a square cylinder are employed to validate the proposed algorithm. We then apply the algorithm to the LES of turbulent flows passing a full-size high-speed train with realistic geometry and operating conditions. The numerical results show that the algorithm is both accurate and efficient and exhibits a good scalability and parallel efficiency with tens of millions of degrees of freedom on a computer with up to 4096 processors. To understand the numerical behavior of the proposed fully implicit scheme, we study several important issues, including the choices of linear solvers, the overlapping size of the subdomains, and, especially, the accuracy of the Jacobian matrix. The results show that an exact Jacobian is necessary for the efficiency and the robustness of the proposed LES solver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号