首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Optically Active Carotenoids with (R)-4-Hydroxy β-End Groups We describe the synthesis of optically active iso-β-kryptoxanthin ( 12 ; (R)-β,β-caroten-4-ol), iso-α-kryptoxanthins 14 ((4R,6′RS)-β,ε-caroten-4-ol) and 16 ((4R,6′R)-β,ε-caroten-4-ol), 4′-hydroxyechinenone ( 18 ; (R)-4′-hydroxy-β,β-caroten-4-one), and isorubixanthin ( 20 ; (R)-β,ω,-caroten-4-ol), their 400-MHz-1H-NMR spectra, CD spectra and HPLC behaviour.  相似文献   

2.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

3.
Absolute Configuration of α-Doradexanthin and of Fritschiellaxanthin, a New Carotenoid from Fritschiella tuberosa IYENG . Fritschiellaxanthin, a new oxocarotenoid produced by the green alga Fritschiella tuberosa, in a nitrogen-deficient medium is now shown to be (3 S, 3′ R, 6′ R)-3, 3′-dihydroxy-β, ?-caroten-4-one ( 4b ). It is not identical with α-Doradexanthin ( 5b ) previously found in goldfish (Carassius auratus) and to which we assign the (3 S, 3′ S, 6′ R)-chirality. Consequently, fritschiellaxanthin and α-Doradexanthin are C(3′)-epimers of lutein-4-on. Furthermore, the so-called ′lutein′ from goldfish has now been found to be identical with 3′-epilutein (3) . Therefore, fritschiellaxanthin is probably biogenetically derived from lutein (2) , whereas α-Doradexanthin is formed from 3′-epilutein (3) with 3, O-didehydrolutein (=(3R, 6′R)-3-hydroxy-β, ?-caroten-3′-one 10) as a precursor. For comparison, optically active 10 and 3 have been prepared from lutein (2) and are fully characterised.  相似文献   

4.
The main pigments of Rhizobium lupini were 2,3,2′,3′-di-trans-tetrahydroxy-β,β-caroten-4-one and 2,3,2′,3′-di-trans-tetrahydroxy-β,β-carotene. As minor components 7,8,7′,8′-tetrahydro-ψ, ψ-carotene (ζ-carotene), β, β-carotene (β-carotene), and tentatively, a 2,3,2′(or 3′)-trihydroxy-β, β-caroten-4-one and a 2,3,2′(or 3′)-trihydroxy-β, β-carotene were identified.  相似文献   

5.
Reinvestigation of the Carotenoids from Rosa foetida, structures of 12 Novel Carotenoids; Stereoisomeric Luteoxanthins, Auroxanthins, Latoxanthins and Latochromes From petals of the yellow Rosa foetida HERRM ., more than 35 individual carotenoids were isolated and identified. Thereof, 87% belong to the expoxycarotenes. Structures were assigned for the first time to 4 auroxanthins ((8R,8′S), 6 ; (8S,8′S), 7 ; (8R,8′R), 8 ; (9Z,8R,8′R), 12 ), to 4 luteoxanthins ((8′R), 4 ; (8′S), 5 ; (9Z,8′R), 9 ; (9Z,8′S) 10(e) ) and to novel latoxanthins and latochromes, very polar carotenoids having (3S,5R,6R)-trihydroxy β-end groups (latoxanthins 13 and 16 , latochromes 14 and 15 ).  相似文献   

6.
Synthesis of (R)-β, β-Caroten-2-ol and (2R, 2′R)-β, β-Carotene-2,2′-diol Starting from geraniol, the two carotenoids (R)-β, β-caroten-2-ol ( 1 ) and (2R, 2′R)-β, β-carotene-2,2′-diol ( 3 ) were synthesized. The optically active cyclic building block was obtained by an acid-catalysed cyclisation of the epoxide (R)- 4 . The enantiomeric excess of the product was > 95 %.  相似文献   

7.
The content of total carotenoids and the ratio astaxanthin/idoxanthin ( = 3,3′-dihydroxy-β,β-carotene-4,4′-dione/3,3′,4′-trihydroxy-β,β-caroten-4-one) in varoius organs and tissues of one Atlantic salmon (Salmo salar, L.) reared indoors in a tank were analyzed after feeding ‘racemic’ ((3R,3′R)/(3R,3′S; meso)/(3S,3′S) 1:2:) astaxanthin (90 mg/kg feed) during one yera. Configurational analysis of astaxanthin was carried out via the (?)-dicamphanate derivative and that of idoxanthin after reaction with (+)-(S)-l-(l-naphthyl)ethyl isocyanate. Separation of all eight optical isomers of idoxanthin-tricarbamate derivatives by HPLC is described. In salmon, enzymatic reduction of astaxanthin was found to be sterospecific leading to th (4′R)-hydroxy group irrespective of the configuration at C(3′), thus resulting in four different stereoisomers of idoxanthin formed from (3R,3′R), (3R,3′S; meso)-, and (3S3′S)-astaxanthin present in the diet.  相似文献   

8.
Carotenoids from Hips of Rosa pomifera: Discovery of (5Z)-Neurosporene; Synthesis of (3R, 15Z)-Rubixanthin Extensive chromatographic separations of the mixture of carotenoids from ripe hips of R. pomifera have led to the identification of 43 individual compounds, namely (Scheme 2): (15 Z)-phytoene (1) , (15 Z)-phytofluene (2) , all-(E)-phytofluene (2a) , ξ-carotene (3) , two mono-(Z)-ξ-carotenes ( 3a and 3b ), (6 R)-?, ψ-carotene (4) , a mono-(Z)-?, ψ-carotene (4a) , β, ψ-carotene (5) , a mono-(Z)-β, ψ-carotene (5a) , neurosporene (6) , (5 Z)-neurosporene (6a) , a mono-(Z)-neurosporene (6b) , lycopene (7) , five (Z)-lycopenes (7a–7e) , β, β-carotene (8) , two mono-(Z)-β, β-carotenes (probably (9 Z)-β, β-carotene (8a) and (13 Z)-β, β-carotene (8b) ), β-cryptoxanthin (9) , three (Z)-β-cryptoxanthins (9a–9c) , rubixanthin (10) , (5′ Z)-rubixanthin (=gazaniaxanthin; 10a ), (9′ Z)-rubixanthin (10b) , (13′ Z)- and (13 Z)-rubixanthin (10c and 10d , resp.), (5′ Z, 13′ Z)- or (5′ Z, 13 Z)-rubixanthin (10e) , lutein (11) , zeaxanthin (12) , (13 Z)-zeaxanthin (12b) , a mono-(Z)-zeaxanthin (probably (9 Z)-zeaxanthin (12a) ), (8 R)-mutatoxanthin (13) , (8 S)-mutatoxanthin (14) , neoxanthin (15) , (8′ R)-neochrome (16) , (8′ S)-neochrome (17) , a tetrahydroxycarotenoid (18?) , a tetrahydroxy-epoxy-carotenoid (19?) , and a trihydroxycarotenoid of unknown structure. Rubixanthin (10) and (5′ Z)-rubixanthin (10a) can easily be distinguished by HPLC. separation and CD. spectra at low temperature. The synthesis of (3 R, 15 Z)-rubixanthin (29) is described. The isolation of (5 Z)-neurosporene (6a) supports the hypothesis that the ?-end group arises by enzymatic cyclization of precursors having a (5 Z)- or (5′ Z)-configuration.  相似文献   

9.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

10.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule.  相似文献   

11.
Synthesis and Circular Dichroism of Optically Active Carotenoid Models The synthesis of the following optically active carotenoidic model compounds are described: (—)-(3,S,3′S)-3,3′-diisopropenyl-16,17,18,16′,17,18′-hexanor-β,β-carotene ( 1 ), (3R,3′R)-19,20,19′,20′-Metranor-zeaxanthin ( 2 ) and (6R,6′R)-19,20, 19′,20′-tetranor-ε,ε-carotene ( 3 ). These compounds were synthesized for the following reasons: (1) the presence of methyl groups at C(1), C(1′), C(5), C(5′) of cyclic carotenoids profoundly affects the torsional angle of the C(6), C(7)- and C(6′), C(7′)-bonds. Sign and magnitude of this angle are, according to recent theories [4] [5], responsible for a helical chromophore and for strong conservative [4] Cotton effects. CD. measurements of 1 give experimental support to these state- 1 exhibits weaker and less temperature dependent Cotton effects. Of more significance, the shape of the curve is no longer conservative, as expected. This constitutes experimental evidence for the contention that the β-endgroups and the polyene chain indeed form an inherently dissymmetric chromophore in optically active β, β-carotene derivatives; (2) the slightly S-shaped form of the polyene chain of carotenoids, shown by X-ray analyses [12] [13], is mainly ascribed to the presence of the methyl groups in the chain. Models 2 and 3 therefore are assumed to be linear. CD. studies of these compounds should consequently give information about the influence of deviation from Linearity and planarity of the polyene on the CD. spectra of carotenoids. CD measurements of 2 and 3 show that the lack of methyl groups does not alter the general type of the curve. Only the intensity and to some extent the position of the Cotton effects are influenced. Carotenoids with the ε-endgroup possess inherently symmetric but asymmetrically distorted chromophores. The assumption that non-conservative CD. spectra could become conservative upon cooling [4] is experimentally confirmed by model 3 . The rule stating that pairs of all-(E) and mono-(Z) isomers of carotenoids with only one cyclic endgroup should have CD. spectra with the same sign [5] is disproved by the CD. spectra of four stereoisomeric rubixanthins (s. Fig. 5). The UV./VIS. spectrum of 3, λmax 447 (ε 216000), 418 (ε 189000) exhibits the highest molecular extinction ever reported for a carotenoid.  相似文献   

12.
C45- and C50-Carotenoids: Synthesis of an Optically Active Cyclic C20-Building Block and of Decaprenoxanthin ( = (2R, 6R, 2′R, 6′R)-2,2′-Bis(4-hydroxy-3-methylbut-2-enyl)-?, ?-carotene) The synthesis of the optically active cyclic C20-building block (R, R) -15 and of the optically active C50-carotenoid (2R, 6R, 2′R, 6′R)-decaprenoxanthin ( 1 ) starting from (-)-β-pinene ((S)- 2 ) is reported.  相似文献   

13.
Synthesis and Chirality of (5S,6R)-5,6-Epoxy-5,6-dihydro-β,β-carotene and (5R,6R)-5,6-Dihydro-β,β-carotene-5,6-diol, a Compound with Unexpected Solubility Characteristics Wittig-condensation of azafrinal ( 1e ) with the phosphorane derived from 7 leads to a (1:3)-mixture of (E)-9′- and (Z)-9′-β,β-carotene-diol 3 , from which pure and optically active 3 ((5R,6R)-5,6-dihydro-β,β-carotene-5,6-diol) has been isolated as bright violet leaflets, m.p. 168°. Due to the trans-configuration of the diol moiety and to severe steric hindrance, hydrogen bonding is reduced to such an extent, that 3 behaves much more as a hydrocarbon than as a diol. There is good evidence that the so-called ‘β-oxycarotin’ obtained by Kuhn & Brockmann [15] by chromic acid oxidation of β, β-carotene is the corresponding racemic cis-diol. 3 has been converted into (5S, 6R)-5,6-epoxy-5.6-dihydro-β,β-carotene ( 4 ), m.p. 156°. This transformation establishes for the first time the chirality of a caroteneepoxide (without other O-functions). Full spectral and chiroptical data including a complete assignement of 13C-chemical shifts for azafrin methyl ester and 3 are presented.  相似文献   

14.
C45- and C50-Carotenoids. Synthesis of an Optically Active Cyclic C20-Building Block and of (2R,2′S)-3′,4′-Didehydro-1′,2′-dihydro-2-(4-hydroxy-3-methylbut-2-enyl)-2′-(3-methylbut-2-enyl)-β,ψ-caroten-1′-ol (= C. p. 473) The synthesis of the optically active C20-building block (R)- 16 and of the optically active C50-carotenoid C.p. 473 ( 1 ) starting from (?)-β-pinene is reported.  相似文献   

15.
Search for the Presence in Egg Yolk, in Flowers of Caltha palustris and in Autumn Leaves of 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-Carotene-3,3′-diol) and 3′,O-Didehydrolutein ( =(3R,6′R)-3-Hydroxy-β,ε-carotene-3′-one) 3′.O-Didehydrolutein ( =(3R, 6′R)-3-hydroxy-β,ε-carotene-3′-one; 2) has been detected in egg yolk and in flowers of Caltha palustris. This is the first record for its occurrence in a plant. The compound shows a remarkable lability towards base; therefore, it may have been overlooked til now, because it is destroyed under the usual conditions of saponification of the carotenoid-esters. One of the many products formed from 2 with 1% KOH in methanol has been purified and identified as the diketone 3 ( =(3R)-3-hydroxy-4′, 12′-retro-β,β-carotene-3′,12′-dione). The identification of this transformation product from lutein might throw a new light on the metabolism of this important carotenoid in green plants. 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-carotene-3,3′-diol; 1) was not detected in egg yolk, but is present besides lutein in flowers of C. palustris, thus confirming an earlier report of the occurrence of an isomeric (possibly epimeric) lutein (‘calthaxanthin’) in that plant [21]. We were not able to detect even traces of 1 or 2 in the carotenoid fraction from autumn leaves of Prunus avium (cherry), Parrotia persica, Acer montanum (maple) and yellow needles of Larix europaea (larch). α-Cryptoxanthin (4) , a very rare carotenoid, was isolated in considerable quantity for the first time from flowers of C. palustris.  相似文献   

16.
The c40-carotenoid (all-E, 2′R)-deoxy-2′-hydroxyflexixanthin (=1′,2′-dihydroxy-3′,4′-didehydro-1′,2′-dihydro-β,ψ-caroten-4-one;(2′R)- 2 ) was synthesized according to a C15 + C10 + C10 = C40 strategy. The chiral centre was introduced into the C10-end group by the enantioselective Sharpless dihydroxylation. The four building blocks were coupled by applying four consecutive Witting reactions. By comparison of the CD spectra of the synthetic (2′R)- 2 with those of 2 isolated from the gliding bacteria Taxeobacter, the configuration of natural 2 was determined as (2′R).  相似文献   

17.
Carotenoids mit 7-Oxabicyclo[2.2.1]heptyl-End Groups. Synthesis of (2S,5R,6S,2′S,5′R,6′S)-2,5:2′5′-Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene Mukayama's ester 6 (methyl (1S,2R,5S)-2,5-epoxy-2,6,6-trimethylcyclohexane-1-carboxylate) was transformed in a few conventional steps into the title compound 14 . Its CD curve was found to be significantly different from that of the analogous 3,6-epoxide, a fact we tentatively lake as an indication of a (weak) electronic interaction between the ring O-atom and the π-orbitals of the polyene chain.  相似文献   

18.
From the pollens of Aesculus hippocastanum, a new apocarotenoid was isolated as the main carotenoid and, based on the spectroscopic data, identified as (all-E,3R)-3-hydroxy-6′-apo-β-caroten-6′-al ( 4 , aesculaxanthin). In addition, (all-E)-lutein ( 3 ) and (all-E)-β-citraurin ( 5 ) were isolated. Furthermore, 6 (aesculaxanthol) was prepared by reduction of 4 with NaBH4 and tentatively identified as natural carotenoid.  相似文献   

19.
Karpoxanthin and 6-Epikarpoxanthin A tetrahydroxy-β,β-carotene previously isolated in minute amounts from ripe hips of Rosa pomifera was now identified as (3S,5R,6R,3′R)-5,6-dihydro-β,β-carotene-3,5,6,3′-tetrol ( 2 ). Acid hydrolysis of (9Z)-antheraxanthin ( 3 ) gave 2 and its C(6)-epimer 4 . Tetrol 2 is named karpoxanthin.  相似文献   

20.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号