首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
欧阳伟平  张冕  孙虎 《力学学报》2016,48(2):464-472
多段压裂水平井技术是目前开采致密气最常用的方法之一,在致密气压裂水平井试井测试中常常伴随着一定的产水量,井筒气液两相流会增加井筒流体的流动阻力,加大井筒流体流动对试井解释的影响.为了明确井筒气液两相流对致密气藏压裂水平井试井的影响,提高产水致密气压裂水平井的试井解释精度,建立了一种井筒气液两相流与地层渗流耦合的试井模型,采用数值方法对模型进行求解,获得了考虑井筒气液两相流的压裂水平井试井理论曲线、压力场分布及裂缝产量分布.研究结果表明:井筒气液两相流会增加试井理论曲线中压力和压力导数值,造成靠近入窗点的压力扩散要快于远离入窗点的压力扩散,引起靠近入窗点的裂缝产量要高于远离入窗点的裂缝产量.现场实例分析进一步说明,不考虑井筒两相流可能会对产水压裂水平井的试井解释结果产生很大误差,主要表现为水平井筒假设为无限大导流能力会使得拟合得到的表皮系数偏大,将测试点视为入窗点会使得拟合得到的原始地层压力偏小.所建立的考虑井筒两相流的压裂水平井试井模型为产水致密气井试井资料的正确解释提供了重要技术保障.   相似文献   

2.
Laboratory test of coal permeability is generally conducted under the condition of gas adsorption equilibrium, and the results contribute to an understanding of gas migration in the original coal seams. However, gas flow under the state of non-equilibrium, accompanied by gas adsorption and desorption, is more common in coalbed methane (CBM) recovery and \(\hbox {CO}_{2}\) geological sequestration sites. Therefore, research on gas migration under the non-equilibrium state has a greater significance with regard to CBM recovery and \(\hbox {CO}_{2}\) geological sequestration. However, most permeability models, in which only one gas pressure has been considered, cannot be used to study gas flow under the non-equilibrium state. In this study, a new mathematical model, which includes both fracture gas pressure and matrix gas pressure, and couples the gas flow with the coal deformation, has been developed and verified. With the developed model, the spatial and temporal evolution of gas flow field during gas adsorption and desorption phases has been explored. The results show that the gas pressures present nonlinear distributions in the coal core, and the matrix gas pressure is generally lower than the fracture gas pressure during adsorption, but higher than the fracture gas pressure during desorption. For gas flow during adsorption, the main factor controlling permeability varies at different points. At the initial time, the permeability is dominated by the effective stress, and at the later time, the permeability in the part close to the gas inlet is mainly controlled by the matrix swelling, whereas that in the part close to the gas outlet is still dominated by the effective stress. For gas flow during desorption, from the gas inlet to the gas outlet, the permeability deceases at the initial time, and when the time is greater than 10,000 s, it shows a decreasing and then an increasing trend. The reason is that at the initial time, the permeability is dominated by the increased effective stress caused by the sharp decrease of the fracture gas pressure. Later, desorption of the adsorbed gas results in matrix shrinkage, which further leads to an increase of the permeability.  相似文献   

3.
Based on Fick’s law in matrix and Darcy flow in cleats and hydraulic fractures, a new semi-analytical model considering the effects of boundary conditions was presented to investigate pressure transient behavior for asymmetrically fractured wells in coal reservoirs. The new model is more accurate than previous model proposed by Anbarci and Ertekin, SPE annual technical conference and exhibition, New Orleans, 27–30 Sept 1998 because new model is expressed in the form of integral expressions and is validated well through numerical simulation. (1) In this paper, the effects of parameters including fracture conductivity, coal reservoir porosity and permeability, fracture asymmetry factor, sorption time constant, fracture half-length, and coalbed methane (CBM) viscosity on bottomhole pressure behavior were discussed in detail. (2) Type curves were established to analyze both transient pressure behavior and flow characteristics in CBM reservoir. According to the characteristics of dimensionless pseudo pressure derivative curves, the process of the flow for fractured CBM wells was divided into six sub-stages. (3) This paper showed the comparison of transient steady state and pseudo steady state models. (4) The effects of parameters including transfer coefficient, wellbore storage coefficient, storage coefficient of cleat, fracture conductivity, fracture asymmetry factor, and rate coefficient on the shape of type curves were also discussed in detail, indicating that it is necessary to keep a bigger fracture conductivity and fracture symmetry for enhancing well production and reducing pressure depletion during the hydraulic fracturing design.  相似文献   

4.
During CBM (coalbed methane) production, the interaction of coal fracture surface with water flow commonly generates and starts coal fine flow. Part of flowing coal fines deposit in coal fracture system due to water production reduction and methane production increase. The fine sedimentation results in the reduction of coal permeability and well productivity. Despite the increasing awareness of the importance of fine migration, limited research has been carried out on the flow model of coal fine coupled with water and gas. In this paper, a flow model of coal fine is established coupled with water and gas flow, taking coal fine generation, migration and sedimentation process into consideration. Then, case simulations are conducted to illustrate effects of water production schedule, permeability performance and gas content on production performance in flow model. The simulation results indicate that methane rate with the lowest initial water rate is observed to have the highest production in late production period. This is mainly due to the reason that the low water flow cannot generate and start the flow of coal fine. Further, the case with high initial water production has faster gas and water flow rate, thus higher coal fine generation rates, which can improve well productivity at earlier production period. As water production declines quickly, both permeability and production performance decrease, which leads to the loss of well productivity. Meanwhile, higher gas content will lead to a faster water production decline at late production period. This indicates that a portion of coal fines plugged in the fracture as water production deceases and the CBM reservoir with high gas content should not adopt a high initial water production schedule.  相似文献   

5.
低渗透煤层气藏中气-水两相不稳定渗流动态分析   总被引:5,自引:4,他引:1  
刘文超  刘曰武 《力学学报》2017,49(4):828-835
针对低渗透煤层渗流问题,考虑启动压力梯度及其引起的动边界和动边界内吸附气解吸作用的渗流模型研究目前仅限于单相流,而更符合实际的气-水两相渗流动边界模型未见报道.本文综合考虑了煤层吸附气的解吸作用、气-水两相渗流、非达西渗流、地层应力敏感等影响因素,进行了低渗透煤层的气-水两相渗流模型研究.采用了试井技术中的"分相处理"方法,修正了两相渗流的综合压缩系数和流度,并基于含气饱和度呈线性递减分布的假设,建立了煤层气藏的气-水两相渗流耦合模型.该数学模型不仅可以描述由于低渗透煤层中渗流存在启动压力梯度而产生的可表征煤层有效动用范围随时间变化的移动边界,还可以描述煤层有效动用范围内吸附气的解吸现象以及吸附气解吸作用所引起的煤层含气饱和度的上升;为了提高模型精度,控制方程还保留了二次压力梯度项.采用了稳定的全隐式有限差分方法进行了模型的数值求解,并验证了数值计算方法的正确性,获得了模型关于瞬时井底压力与压力导数响应的双对数特征曲线,由此分析了各渗流参数的敏感性影响.本文研究结果可为低渗透煤层气藏开发的气-水两相流试井技术提供渗流力学的理论基础.  相似文献   

6.
储层含气量的准确评估是目前制约非常规天然气高效开发的重要因素, 直接法采用损失气估算模型结合解吸曲线估算储层含气量, 但现有损失气估算模型均基于煤层气的常压边界条件和球形颗粒假设, 如美国矿业局提出的USBM方法, 为埋藏深、柱状岩心的页岩气藏含气量的估算带来较大误差. 本文基于扩散理论, 采用时变压力边界条件和柱坐标系求解一维扩散方程获得解析解, 从而提出了新的损失气估算模型, 即变边界分段模型, 该模型能够反演出提钻和解吸两个阶段气体逸散的不同特征. 结果表明: 在提钻阶段, 环境压力不断降低, 岩心内外压差增大, 气体逸散速率加快, 从而是下凸函数; 在解吸阶段, 环境压力恒定, 岩心内压力随气体逸散而下降, 内外压差减小, 气体逸散速率减慢, 因而是上凸函数. 进一步为证明模型的准确性, 基于相似原理在实验室搭建了损失气?解吸气复原实验系统, 采用圆柱状页岩岩心复现提钻过程和解吸过程的气体逸散情况, 得到的实验结果与变边界分段模型吻合, 而已有的USBM方法不能进行准确预测, 验证了本文提出的变边界分段模型正确性. 根据川南地区Y151井现场测试数据, 采用变边界分段模型进行拟合预测, 所得结果良好, 验证了变边界分段模型的适用性.   相似文献   

7.
A new well test model is developed for the hydraulic fractured well in coalbed by considering the following aspects: methane desorption phenomena, finite conductivity vertical fractures, and asymmetry of the fracture about the well. A new parameter is introduced to describe the storage of the fracture, which is named as a combined fracture storage. Another new concept called the fracture asymmetry coefficient is used to define the asymmetry of the fracture about the well. Finite element method (FEM) is used to solve the new mathematical model. The well test type curves and pressure fields are obtained and analyzed. The effects of the combined fracture storage, desorption factor, fracture conductivity, and fracture asymmetry coefficient on the well test type curves are discussed in detail. In order to verify the new model, a set of field well test data is analyzed.  相似文献   

8.
Coalbed methane (CBM) reservoirs contain gas molecules in adsorbed state into the solid matrix of coal. The pressure depletion in CBM reservoir causes the matrix gas to desorb into the cleat system which leads to matrix shrinkage. The pore volume of the cleat network changes as coal matrix shrinks. Consequently, cleat porosity and permeability of reservoir change as reservoir pressure depletes. The change in cleat porosity and permeability due to shrinkage of coal matrix with depletion of reservoir pressure invalidates the underlying assumptions made in the derivation of diffusivity equation. Under the conditions of changing porosity and permeability, the utility of the standard method of inflow performance relationship (IPR), paired with \(\frac{P}{Z^{*}}\) method suggested by King (in: SPE Annual Technical Conference and Exhibition, New Orleans, 1990), for performance prediction diminishes. In this paper, an effort has been made to predict reservoir performance of such CBM reservoirs with an alternative approach. The method suggested by Upadhyay and Laik (Transp Porous Media, 2017. doi: 10.1007/s11242-016-0816-6) has been leveraged to describe pseudo-steady-state flow in the form of a new equation that relates stress-dependent pseudo-pressure function with time. The analytical equation derived in this paper is useful in predicting reservoir pressure and flowing bottom hole pressure of a CBM well under the situation when coal matrix shrinks below desorption pressure. The paper aims to predict production performance of CBM reservoirs producing under the influence of matrix shrinkage effect with an approach alternative to conventional IPR approach paired with \(\frac{P}{Z^{*}}\) method. The results of this analytical solution have been validated with the help of numerical simulator CMG–GEM as well as in-field production data. The equations and workflow suggested in this paper can be easily implemented in spreadsheet applications like Microsoft Excel tools.  相似文献   

9.
A simple and effective experimental method is proposed to simulate coal fines migration through the proppant pack; such migration inevitably occurs during the process of fracturing fluid flowback or dewatering and gas production in coalbed methane (CBM) reservoirs. The damage to conductivity caused by coal fines migration in the pack and the factors affecting such migration are analyzed. A dispersion agent of coal fines applicable to hydraulic fracturing in CBM is optimized, consequently solving the problem of coal fines aggregation and retention in the proppant pack. Discharging coal fines with water or water-based fracturing fluid from the proppant pack can be difficult because of the adsorption and hydrophobicity of coal fines. Thus, coal fines are likely to aggregate and be retained in the proppant pack, thereby resulting in pore throat plugging, which causes serious damage to fracture conductivity. Two percent coal fines can reduce propped fracture conductivity by 24.4 %. The mobility and retention of coal fines in the proppant pack are affected by proppant size, proppant type, flowback rate, and coal fines property. When flowback rate exceeds the critical value, coal fines can be discharged from the pack, consequently reducing damage to propped fracture conductivity. More importantly, the steady discharging of coal fines requires steady dewatering and gas production to avoid flow shock, which causes pressure disturbance to drive coal fines in a remote formation. The optimized dispersant FSJ-02 employed in this paper can effectively change the wettability and surface potential of coal fines to improve their suspension and dispersion in water-based fracturing fluid. The recovery rate of coal fines increased by 31.5 %, whereas conductivity increased by 13.3 %.  相似文献   

10.
基于离散裂缝的多段压裂水平井数值试井模型及应用   总被引:2,自引:0,他引:2  
水平井压裂技术已经成为开发低渗透油气藏、页岩气藏和致密气场等非常规油气藏的关键技术。基于离散裂缝模型,对裂缝进行简化,建立了二维多段压裂水平井有限导流数值试井模型,利用有限元方法求解模型,获得多段压裂水平井试井理论曲线和压力场特征。分析表明:多段压裂水平井的试井理论曲线一共分为七个阶段:井筒储存段、裂缝线性流段、裂缝-地层双线性流段、裂缝干扰段、地层线性流段、系统径向流段和边界作用段,其中裂缝-地层双线性流段和裂缝干扰是其典型特征。分析了裂缝数量、裂缝间距、裂缝不对称、裂缝不等长和裂缝部分缺失等因素对试井理论曲线的影响,结果表明:裂缝数量和裂缝间距对试井理论曲线的影响最大。较多的裂缝、较大裂缝间距、对称的裂缝和等长的裂缝有利于降低压裂水平井井底的流动阻力,提高产能。将建立的数值试井模型应用于四川盆地一口多段压裂水平井的压力恢复测试的数值试井解释,结果表明:本文建立的模型可以较好的拟合压力恢复测试数据,可以获得裂缝的导流能力和裂缝长度,为压裂效果评价和压裂设计提供指导。   相似文献   

11.
水力压裂在页岩气开采中被广泛使用,采用数值方法研究压裂机理具有重要意义.基于连续-非连续单元法(CDEM) 和中心型有限体积法(FVM),提出解决水力压裂流固耦合问题的二维混合数值计算模型.该混合模型中,使用CDEM 求解应力场和裂缝扩展过程,使用FVM 求解裂隙渗流场.应力场裂缝扩展和渗流场均使用显式迭代求解, 并通过相互之间数据交换实现流固耦合.通过与KGD 理论模型进行对比, 验证数值模型的正确性.通过与颗粒离散元数值结果进行对比,验证数值模型的有效性.通过计算复杂缝网压裂模型,研究水力压裂机理,并说明该数值模型在水力压裂模拟中具有很好的前景.   相似文献   

12.
唐巨鹏  田虎楠  潘一山 《力学学报》2021,53(8):2193-2204
煤系页岩瓦斯主要以吸附态和游离态形式存在, 其解吸过程相对吸附过程具有普遍滞后现象, 因此从微细观角度定量研究其吸附?附解吸迟滞规律对页岩气井后期稳产增产具有重要意义. 在前人研究基础上结合核磁共振谱理论推导出能够准确表征煤系页岩瓦斯吸附?解吸迟滞效应微细观评价模型, 并采用核磁共振谱测试技术, 以双鸭山盆地东保卫煤矿三采区36# 煤层底板煤系页岩为研究对象, 进行煤系页岩瓦斯吸附?解吸迟滞效应核磁共振谱实验, 模拟不同储层原位应力状态煤系页岩瓦斯迟滞效应发生全过程, 进一步对吸附态瓦斯、游离态瓦斯以及微细观方法测定的宏观瓦斯迟滞规律进行定量化研究, 并对其发生机理以及其对深部煤系页岩瓦斯开采影响进行了初步探究. 结果表明: 应力状态下吸附态和游离瓦斯均有滞后效应; 瓦斯宏观迟滞系数与平均有效应力呈幂函数关系, 而瓦斯宏观迟滞效应中由吸附态或游离态瓦斯引起的迟滞系数与平均有效应力关系均可采用二次多项式拟合; 孔裂隙应力损伤和微孔隙瓦斯扩散受限耦合或许是煤系页岩瓦斯吸附?解吸迟滞效应产生根本原因之一.   相似文献   

13.
页岩气藏压裂水平井试井分析   总被引:5,自引:2,他引:3  
朱光普  姚军  樊冬艳  曾慧 《力学学报》2015,47(6):945-954
页岩气藏资源丰富,开发潜力巨大,已成为目前研究的热点.与常规气藏相比,页岩气藏运移机制复杂,流动模式呈非线性,有必要考虑页岩气的吸附解吸,天然微裂缝的应力敏感性,人工裂缝内的非达西流等非线性因素对压裂水平井压力响应的影响. 基于双重介质和离散裂缝混合模型,分别采用Langmuir等温吸附方程描述吸附解吸,渗透率指数模型描述应力敏感,Forchheimer方程描述非达西效应,建立页岩气藏压裂水平井数值试井模型. 运用伽辽金有限元法对模型进行求解.根据试井特征曲线,划分流动阶段,着重分析非线性因素对压力响应的影响.结果表明:页岩气藏压裂水平井存在压裂裂缝线性流、压裂裂缝径向流、地层线性流、系统径向流及封闭边界影响5 种流动阶段.吸附解吸的影响发生窜流之后,Langmuir吸附体积增大,拟压力导数曲线凹槽更加明显,系统径向流出现时间与压力波传播到边界时间均延迟;天然裂缝系统的应力敏感性主要影响试井曲线的晚期段,拟压力和拟压力导数曲线均表现为上翘,应力敏感效应越强,上翘幅度越大;高速非达西效应对早期段影响较大,非达西效应越强,拟压力降幅度越大,试井曲线上翘.与解析解的对比以及矿场实例验证了模型的正确性与适用性.   相似文献   

14.
This article presents the PTA on the multi-stage fractured horizontal well in shale gas reservoirs incorporating desorption and diffusive flow in the matrix. Currently, most PTA models are simply based on Darcy flow both in natural fractures and matrix without considering the mechanisms of desorption and diffusion in shale matrix. Source function and Laplace transform with the numerical discrete method are employed to solve the mathematical model. The solution is presented in the Laplace domain so that the wellbore storage effect and skin factor can be easily incorporated by convolution. Type curves are plotted with Stehfest algorithm and different flow regimes are identified. The presented model could be used to interpret pressure signals more accurately for shale gas reservoirs.  相似文献   

15.
Coalbed methane (CBM) is increasingly receiving attention as a relatively clean-burning energy source, and many experimental studies have been conducted to enhance CBM production. The specimen dimensions used previously have generally been too small to install boreholes or sensors, and small-scale samples usually cannot avoid the seepage field error induced by the boundary problem. In this study, a novel piece of large-scale, multi-field coupling equipment was designed to closely approximate the real environment for CBM extraction by parallel boreholes along coal seam. The dimensions of the specimen were 1050?×?400?×?400 mm3. In the study, 4 boreholes, 40 gas pressure sensors, and 14 temperature sensors were installed inside the specimen in total. According to the experimental findings, the dynamic evolution of the gas flow rate, gas pressure, and temperature shows similar variation trends, dropping sharply at first and then leveling off. Distance from the gas pressure sensors to the boreholes is the key factor influencing gas pressure (i.e., the shorter the distance, the faster the gas pressure drop). Gas pressure isobars in the Z3 plane, which is perpendicular to the borehole, show a circular distribution with the four boreholes at the center. The permeability declines more quickly closer to the borehole during the initial stage of CBM extraction and rebounds positively correlated with its proximity to the borehole later. At the end of the experiment, the cumulative flow rate of the four branch boreholes is 634.9, 609.3, 611.0, and 594.7 L, which accounts for 79.3% of the total quantity injected (3088.2 L). The second-order exponential decay function fits the cumulative flow rate well and may be used to predict the gas production in the future.  相似文献   

16.
以煤矿巷道围岩(砂岩)为研究对象,采用MTS815.02岩石力学试验系统,对流固耦合蠕变过程中孔隙水压力作用机制展开研究,以伯格斯模型为基础,基于Lemaitre原理建立改进的伯格斯非线性蠕变损伤模型,可以得到如下主要结论:当围压越大,岩石蠕变最后一级荷载作用持续时间越长,相对经历衰减蠕变和稳定蠕变时间越长;且由最终一级破坏蠕变变形值可知,孔隙水压较小时,蠕变变形量相对较大,此时围压增大提升了岩石延性特性,但是孔隙水压增大却削弱了围压作用,由于孔隙水压使得岩石力学性能劣化,因而减少了岩石在破坏时蠕变变形量;随后基于Lemaitre原理建立的伯格斯非线性损伤蠕变模型,可以较好地描述岩石的衰减蠕变、稳定蠕变与加速蠕变阶段;且试验曲线与拟合曲线吻合度高,验证了本文所建立损伤流变模型的合理性.  相似文献   

17.
Desorption of gas from coal matrix alters the pore volume of fracture network. Consequently, cleat porosity and permeability of reservoir changes as pressure depletes. The method of standard pressure analysis calculations produces incorrect results in the case of coalbed methane reservoirs producing under dominant matrix shrinkage effect. The change in cleat porosity and permeability due to shrinkage of coal matrix following gas desorption with pressure depletion invalidates the underlying assumptions made in the derivation of diffusivity equation. Consequently, equations of pseudo-steady state commonly used in conventional reservoirs no longer remain valid as the porosity and permeability values change with pressure depletion. In this paper, effort has been made to describe pseudo-steady-state flow in coalbed methane reservoirs in the form of a new equation that accounts for pressure dependency of cleat porosity and permeability due to shrinkage of coal matrix. The concept of Al-Hussainy et al. (1966) has been extended to define a new pseudo-pressure function which assimilates within itself the pressure dependence of porosity and permeability Palmer and Mansoori (1998). Equation has been used to relate the cleat porosity with pressure. The equation-based computational method suggested in this paper finds its usefulness in estimating average reservoir pressure for any known flowing bottom hole pressure and thus reducing the frequency of future pressure buildup tests. The new equation is also useful in predicting reservoir pressure under the situation when coal matrix shrinks below desorption pressure. The equation used in the computational method has been validated with the help of numerical simulator CMG-GEM.  相似文献   

18.
王营子矿煤层中水—煤层气两相流体渗流规律的研究   总被引:1,自引:0,他引:1  
本文通过在实验室中自行设计的装置,测定了阜新王营子矿煤层中水、煤层气共同流动时的两相流体的流量、渗透率及随水的饱合度变化关系,并根据这种数据模拟出了该煤层反映水、煤层气渗透基本规律的数学关系式,从而为它的煤层气开采提供了理论依据。  相似文献   

19.
气体压力是煤吸附/解吸瓦斯的重要影响因素之一。因此,在实验室通过改变压力差,进行了一次升压/降压和等梯度逐次升压/降压方式吸附/解吸试验。通过比较分析了两种吸附/解吸方式煤变形量大小,研究了两种吸附/解吸方式下煤残余变形量的变化规律。研究结果表明,等梯度逐次升压吸附煤膨胀变形量大于同一压力水一次升压吸附煤膨胀变形量,而两种解吸试验中煤收缩变形量大小关系与之相反,残余变形量大小关系与之相同;同一压力水平下,变压力梯度降压解吸好于等梯度逐次降压解吸。  相似文献   

20.
海陆过渡相页岩气藏不稳定渗流数学模型   总被引:1,自引:1,他引:0  
海陆过渡相页岩常与煤层和砂岩呈互层状产出, 储层连续性较差、横向变化快、非均质性强, 水力压裂技术是其获得经济产量的关键手段. 然而, 目前缺乏有效的海陆过渡相页岩气藏不稳定渗流数学模型, 对其渗流特征分析及储层参数评价不利. 针对这一问题, 首先建立海陆过渡相页岩气藏压裂直井渗流数学模型, 其次采用径向复合模型来反映强非均质性, 采用Langmuir等温吸附方程来描述气体的解吸和吸附, 分别采用双重孔隙模型和边界元模型模拟天然裂缝和水力裂缝, 建立并求解径向非均质的页岩气藏压裂直井不稳定渗流数学模型, 分析海陆过渡相页岩气藏不稳定渗流特征, 并进行数值模拟验证和模型分析应用. 分析结果表明, 海陆过渡相页岩气藏不稳定渗流特征包括流动早期阶段、双线性流、线性流、内区径向流、页岩气解吸、内外过渡段、外区径向流及边界控制阶段. 将本模型应用在海陆过渡相页岩气试井过程中, 实际资料拟合效果较好, 其研究成果可为同类页岩气藏的压裂评价提供一些理论支撑, 具有较好应用前景.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号