首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexation in anhydrous methanol of Cu (II) and Zn (II) with diaza-polyoxamacrocyclic ligands Protonation of five diaza-polyoxamacrocyclic ligands, (L = [2.1], [2.2], [2.1.1.], [2.2.1], [2.2.2]), and their complexing properties towards Cu2+ and Zn2+ cations have been studied in anhydrous methanolic solutions. Potentiometric measurements have been carried out at 25°, using 5 · 10?2MEt4N+ClO as support-electrolyte, in order to determine the nature of the species formed upon complexation and their stability constants. The results were confirmed by spectrophotometry, for the cupric complexes of [2.1] and [2.2.2], and the electronic spectra of the different complexes were calculated. Comparison between complexation in aqueous and methanolic solutions have been made: as in water, ML2+ species and sometimes protonated MHL3+ species, with higher stability constants, are present in methanol; but the main difference is the formation of dinuclear complexes M2L4+, between Cu2+ and all ligands except [2.1]. In these complexes the Cu2+ cations cannot be both ‘encaged’ in the ligand cavity because of its small size. The different possible structures are discussed in terms of the stability constants values. The protonation constants values and the existence of the binuclear complexes may indicate a possible conformational change in the complexing ligand on changing the solvent from water to methanol.  相似文献   

2.
The interaction of solvents and of unidentate ligands such as N, SCN?, OCN? and OH? with the Co2+-, Ni2+ and Cu2+-complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) have been studied by Spectrophotometric and calorimetric techniques. The spectra in different solvents (Table 2) show that the Ni2+- and probably also the Cu2+-complex with TMC exist as square planar or pentacoordinate species or as a mixture of both, depending on the donor properties of the solvent. The [Co(TMC)]2+-complex is pentacoordinate in all the solvents studied. Ternary complexes [M(TMC)X]n+ are also formed by the unidentate ligands X = N, OCN?, OH?, F? and NH3 and their stability constants have been determined. Interesting is the high selectivity of [Ni(TMC)]2+ towards the addition of a further donor (Table 3). Only small ligands such as those listed above form stable adducts, whereas the larger ones such as imidazole or pyridine do not. This is a consequence of the special structure of the complex and of the trans-I-(RSRS)- conformation of the ligand in these complexes. Since the four methyl groups are all on the side of the macrocycle to which the additional unidentate ligand binds, steric interaction between the four methyl groups and the larger ligands prevents the formation of the adducts. The calorimetric measurements show that the stability of the complexes [M(TMC)X]n+ is due to both an enthalpic and entropic contribution which differ in their magnitude (Table 4). This indicates that several antagonistic factors are important in determining the overall stability.  相似文献   

3.
Nature and Stability of Some Metallic Complexes of Dinucleating Cryptands in Solution. I. A Polyazapolyoxa Cylindrical Macrotricycle and its Monocyclic Subunit pH-metry and UV spectrophotometry were used to study the complexing properties of the cylindrical macrotricycle, 1,7,13,19-tetraaza-4,16-dioxa-10,22,27,32-tetraoxatricyclo[17.5.5.5]tetratriacontane ( 1 ) and of its constitutive monocyclic subunit, 1,7-diaza-4,10-dioxacyclododecane ( 2 ) with some transition and heavy metal cations (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+), in aqueous medium 0.1M Et4NClO4, at 25°. The protonation constants of the ligands as well as the nature and the stabilities of the complexes formed in the pH-regions studied were determined. The tricycle 1 only formed dinuclear M2L complexes with Cu2+, Zn2+, and Ag+, accompanied in the latter case by a protonated mononuclear MLH species, and with Cu2+ and Zn2+ at high pH-values by dinuclear hydroxo complexes. Only mononuclear complexes were evidenced with the other cations, ML being accompanied either by protonated or hydroxy mononuclear species. The mononuclear complexes of 1 , when they existed, were more stable than the corresponding complexes of 2 , except for cobalt which formed complexes of comparable stability with both ligands. In the other cases (Cd2+, Pb2+, Ag+), the stability differences between the complexes of 1 and 2 increased with the size of the cation.  相似文献   

4.
The copper-catalyzed oxidation of ascorbic acid (AscH2) has been studied with a Clark electrode in aqueous MeCN. CuI or CuII may be equally used as the source of metal ion, without influence on the rate law. At sufficiently high [MeCN], the rate of the overall reaction is essentially given by the rate of CuI autoxidation: the reaction is of first order with respect to [Cu] and [O2] and shows an inverse-square dependence on [MeCN] as observed for the autoxidation of Cu. The pH dependence is complicated by the combination of the intrinsic pH effect on autoxidation with an additional term in the rate law which is directly proportional to [AscH?]. The latter term is explained by direct oxidation of the organic substrate by the primary dioxygen adduct of CuI, CuO. For [MeCN] < 0.7M , a gradual and pH-dependent transformation of this rate law and deviation from the first-order dependence on [O2] is indicated.  相似文献   

5.
Treatment of an acetonitrile solution of CuI with 1, 10‐dithia‐18‐crown‐6 (1, 10DT18C6) in the presence of Rb2CO3 leads to formation of the lamellar coordination polymer [Rb{Cu4I5(1, 10DT18C6)2}] ( 1 ).The anionic network of 1 is composed of parallel [(Cu4I5)] chains linked by bridging thiacrown ether ligands, pairs of which coordinate the Rb+ counter cations. [Cs{Cu5I6(1, 10DT18C6)2}] ( 2 ) can be prepared under similar conditions but contains separated helical anionic chains. In this case 1, 10DT18C6 ligands bridge copper atoms of individual chains in an intrastrand manner. In contrast the coordination networks in [(CuCN)2(1, 10DT18C6)] ( 3 ) and [K2{Cu12(CN)14(1, 10DT18C6)3} · CH3CN] ( 4 ) are both three‐dimensional and based on CuCN‐containing sheets bridged by 1, 10DT18C6 ligands. In the latter compound pairs of K+ cations are coordinated by groups of three thiacrown ether molecules. The neutral network of 3 can imbibe up to 31 % KNO3 per 1, 10DT18C6 pair without loss of lattice integrity.  相似文献   

6.
The Cu2+ and Ni2+ complexes of three reinforced tetraazamacrocycles, containing a piperazine subunit and one or two alkyl substituents at the other two N-atoms have been prepared and their structural properties studied. In solution, the Ni2+ complexes are square-planar and show no tendency to axially coordinate a solvent molecule or an N ion. In contrast, the Cu2+ complexes change their geometry depending upon the donor properties of the solvent, being square-planar in MeNO2 and pentacoordinate in DMF. They also easily react in aqueous solution with N to give ternary species with pentacoordinate geometry, the stabilities of which have been determined. In the solid state, the X-ray crystal structures of three Cu2+ complexes also show both geometrical arrangements, two having a square-planar, the other one a distorted square pyramidal geometry. The difference behavior of Ni2+ and Cu2+ stems from the fact that the structural change from square-planar to square-pyramidal can easily be accomplished for Cu2+, whereas, for Ni2+, it is accompanied by an electronic rearrangement from the low-spin to the high-spin configuration. The relatively rigid ligands cannot Adapt to the somewhat larger high-spin Ni2+ion.  相似文献   

7.
The stability constants of the 1:1 complexes formed between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, (in part) Zn2+, or Cd2+ and (phosphonylmethoxy)ethane (PME2?) or 9?[2?(phosphonylmethoxy)ethyl]adenine (PMEA2?) were determined by potentiometric pH titration in aqueous solution (I = 0.1M , NaNO3; 25°). The experimental conditions were carefully selected such that self-association of the adenine derivative PMEA and of its complexes was negligibly small; i.e., it was made certain that the properties of the monomeric [M(PMEA)] complexes were studied. Recent measurements with simple phosphate monoesters, R–MP2– (where R is a non-coordinating residue; S. S. Massoud, H. Sigel, Inorg. Chem. 1988 , 27, 1447), were used to show that analogously simple phosphonates (R? PO) – we studied now the complexes of methyl phosphonate and ethyl phosphonate – fit on the same log K/logK vs. pK/ pK straight-line plots. With these reference lines, it could be demonstrated that for all the [M(PME)] complexes with the mentioned metal ions an increased complex stability is measured; i.e., a stability higher than that expected for a sole phosphonate coordination of the metal ion. This increased stability is attributed to the formation of five-membered chelates involving the ether oxygen present in the ? O? CH2? PO residue of PME2? (and PMEA2?); the formation degree of the five-membered [M(PME)] chelates varies between ca. 15 and 40% for the alkaline earth ions and ca. 35 to 65% for 3d ions and Zn2+ or Cd2+. Interestingly, for the [M(PMEA)] complexes within the error limits exactly the same observations are made indicating that the same five-membered chelates are formed, and that the adenine residue has no influence on the stability of these complexes, with the exception of those with Ni2+ and Cu2+. For these two metal ions, an additional stability increase is observed which has to be attributed to a metal ion-adenine interaction giving thus rise to equilibria between three different [M(PMEA)] isomers. These equilibria are analyzed, and for [Cu(PMEA)] it is calculated that 17(±3)% exist as an isomer with a sole Cu2+-phosphonate coordination, 34(±10)% form the mentioned five-membered chelate involving the ether oxygen, and the remaining 49(±10)% are due to an isomer containing also a Cu2+-adenine interaction. Based on various arguments, it is suggested that this latter isomer contains two chelate rings which result from a metal-ion coordination to the phosphonate group, the ether oxygen, and to N(3) of the adenine residue. For [Ni(PMEA)], the isomer with a Ni2+-adenine interaction is formed to only 22(±13)%; for [Cd(PMEA)] and the other [M(PMEA)] complexes if at all, only traces of such an isomer are occurring. In addition, the [M(PMEA)] complexes may be protonated leading to [M(H·PMEA)]+ species in which the proton is mainly at the phosphonate group, while the metal ion is bound in an adenosine-type fashion to the nucleic base residue. Finally, the properties of [M(PMEA)] and [M(AMP)] complexes are compared, and in this connection it should be emphasized that the ether oxygen which influences so much the stability and structure of the [M(PMEA)] complexes in solution is also crucial for the antiviral properties of PMEA.  相似文献   

8.
The solubility of precipitated Cd(OH)2 was determined at 25°C in 1 M NaClO4, as a function of pH and of the ammonia content of the solutions. Formation constants were obtained for the following hydroxo, ammine and hydroxo-ammine complexes: CdOH+, Cd(OH)2, Cd(OH), CdNH, Cd(NH3), Cd(NH3), Cd(NH3) and Cd(OH)2NH3. The solubility product of the hydroxide was also calculated. The presence of polynuclear species was investigated by titrimetric determinations of the hydrogen ion concentration at constant metal concentration.  相似文献   

9.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

10.
Using a new mathematical treatment, the nature and stability constants of the simple and mixed complex-species of copper(II) with hydroxyde and ammonia as ligands have been determined. The solubility curves of CuO in heterogeneous equilibrium have been identified in function of pH only and in function of pH and pNH3tot at 25° and unit ionic strength (NaClO4). The predominent species in the relatively dilute system limited by the ionic strength are [Cu2+], [Cu(OH)2], [Cu(OH)], [Cu(OH)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3) (OH)+], [Cu(NH3)3(OH)+] and [Cu(NH3)2(OH)2].  相似文献   

11.
The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   

12.
The complexation of Cue2+ with 1, 8-diamino-3, 6-diaza-2, 7-octanedione (? N, N′-diglycyl-1, 2-ethanediamine, DED) and with 1, 9-diamino-3, 7-diaza-2, 8nonanedione (? N, N′-diglycyl-1, 3-propanediamine, DPD) has been studied by potentiometric and by spectrophotometric titration. With both ligands L the complexation to Cue2+ leads to relatively complicated equilibria with CuLH3+, CuL2+, CuLH?2, and dimeric Cu2L complexes. With DED, another dimeric species, Cu2L2H, is formed in addition. Independent numerical treatment of spectrophotometric and poteritiometric titrations was used to obtain a satisfactory model for the complexation and to test the relative discriminatory power of the two methods. Titrations of glycine ethylamide (GEA) were used as an additional test and as a model for DED and DPD. It was shown that in each case spectrophotometric titrations give results of similar reproducibility and have a discriminatory power equal to or better than potentiometric titrations, provided that optimum mathematical algorithms are used in the numerical treatment.  相似文献   

13.
The behaviour of Na[HCO2], Na[HCOS], and K[HCS2] in aqueous solutions between 4 and 42°C was investigated by means of conductivity measurements. The equivalent conductivities Λ of [HCO2]?, [HCOS]?, and [HCS2]? and the dissociation constants Kc of HCOSH and HCSSH were determined. The STOKES radii of the ions, the radii of the hydrated ions, and their diffusion coefficients were calculated.  相似文献   

14.
The geometry of metal ions (La3+, Ce3+, UO, and Th4+) complexes with 5‐azorhodanine derivatives was optimized at the level of molecular mechanics. Two stoichiometric ratios of metal to ligand (i.e., 1:1 and 1:2) were investigated. Tetracoordinate and hexacoordinate of each stoichiometric ratio have been studied. Effect of substitution in the ligand on the geometry of the complexes was discussed in the light of electron donating–accepting properties of these substituents. The influence of the nuclear effective charge of the central metal ions on the metal–ligand (M–L) bonding was discussed and the effect of the number of ligands on the M–L bond length was also discussed and correlated to the experimental results. The total energies of the different metal complexes were computed using the extended Huckel method. The effect of substituents in ligand, metal type, and stoichiometry of the complexes on the complex total energies were discussed. Stability constant of (La3+, Ce3+, UO, and Th4+) metal ions with 5‐azorhodanine derivaties have been determined potentiometrically in 0.1 M KCl and 50% (v/v) ethanol–water mixture. The order of the stability constants of the formed complexes was found to be La3+ < Ce3+ < UO < Th4+. The influence of substituents on the stability of the complexes was examined on the basis of electron‐repelling property of the substituent. The effect of temperature on the stability of the complexes formed was studied and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) were derived and discussed. The stoichiometries of these complexes were determined conductometrically and indicated the formation of 1:1 and 1:2 (metal:ligand) complexes. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

15.
The enthalpies and entropies of complexation of alkali and alkaline-earth metal cations by several macrobicyclic ligands have been obtained from calorimetric measurements and from the previously determined stability constants [2]. Both enthalpy and entropy changes play an important role in the stability and selectivity of the complexes. Particularly noteworthy are the large enthalpies and the negative entropies of complexation obtained for the alkali cation complexes (Na+, K+, Rb+ and Cs+ cryptates). The Sr2+ and Ba2+ as well as [Li+ ? 2.1.1]
  • 1 For use of the symbols see [2].
  • and [Na+ ? 2.2.1] cryptates are of the enthalpy dominant type with also a favourable entropy change. The Ca2+ and [Li+ ? 2.2.1] cryptates are entirely entropy stabilized with about zero heat of reaction. The high stability of the macrobicyclic complexes as compared to the macromonocylcic ones, the cryptate effect, is of enthalpic origin. The enthalpies of complexation display selectivity peaks, as do the stabilities, whereas the entropy changes do not. The high M2+/M+ selectivities found in terms of free energy, may be reversed when enthalpy is considered in view of the very different role played by the entropy term for M2+ and M+ cations. The enthalpies and entropies of ligation show that whereas the cryptate anions are similar in terms of entropy irrespective of which cation is included, the ligands, despite being more rigid than the hydration shell, are nevertheless able to adjust to some extent to the cation. This conclusion agrees with published X-rays data. The origin of the enthalpies and entropies of complexation is discussed in terms of structural features of the ligands and of solvation effects.  相似文献   

    16.
    The stability constants of the ternary complexes containing UTP, 2,2′-bipyridyl (bipy), and Co2+, Ni2+, Cu2+, or Zn2+ (M2+) have been determined by potentiometric titrations (Table 1). Changes in stability are quantified by Δlog KM = log K–log K. For the Co2+, Ni2+, Cu2+, and Zn2+ systems Δlog KM is 0.10, ?0.13, 0.36, and 0.15, respectively. All these ternary complexes are considerably more stable than would be expected on statistical grounds; indeed, for Co2+, Cu2+, and Zn2+, UTP4? binds more tightly to M (bipy)2+ than to M2+. An UV. difference spectroscopic study suggests that stacked adducts between bipyridyl and the pyrimidine moiety of uridine are formed. 1H-NMR. studies of the bipy/uridine, bipy/UTP, and bipy/UTP/Zn2+ systems (Figs. 1 and 2) confirm the presence of stacking in the binary adducts and in the ternary complex. There is also evidence for the existence of the stacked protonated complex, Zn(bipy) (HUTP)?, with the proton at the γ-phosphate group. The acidity constant of this ternary complex has been measured (Fig. 3). The observed stability enhancement of stacked adducts by the formation of a metal ion bridge is discussed (Fig. 4) and biological implications are indicated.  相似文献   

    17.
    The role of hydrogen bonding in the chemistry of transition‐metal complexes remains a topic of intense scientific and technological interest. Poly(acrylo‐amidino diethylenediamine) was synthesized to study the effects of hydrogen bonding on complexes at different pHs. The polymer was synthesized through the coupling of diethylene triamine with polyacrylonitrile fiber in the presence of AlCl3 · 6H2O addition. The adsorption capacity of this polymer was 11.4 mequiv/g. The ions used for the adsorption test were CrO, PO, Cu2+, Ni2+, Fe2+, and Ag+. All experiments were confirmed with Fourier transform infrared. In the study of anion adsorption, at low pHs, only ionic bonds existed, whereas at high pHs, no bonds existed. However, in the middle pH region, both ionic bonds and hydrogen bonds formed between poly(acrylo‐amidino diethylenediamine) and the chromate ion or phosphate ion. When poly(acrylo‐amidino diethylenediamine) and metal ions (Cu2+, Ni2+, Fe2+, and Ag+) formed complexes, a hydrogen‐bonding effect was not observed with Fourier transform infrared. The quantity of metal ions adsorbed onto poly(acrylo‐amidino diethylenediamine) followed the order Ag+ > Cu2+ > Fe2+ > Ni2+. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2010–2018, 2004  相似文献   

    18.
    The stability constants of complexes of Mn++, Fe++, Co++, Ni++, Cu++, Zn++, Cd++ and UO with 5,7-dichloro-, 5,7-dibromo- and 5,7-dinitro-8-hydroxyquinoline and their corresponding N-oxides have been determined in 75 + 25 v/v dioxan + water medium at 35°C in presence of 0.20 M sodium perchlorate by pH-titration technique as given by IRVING and Rossotti. A possible explanation for the observed orders of the stability constants of the metal complex with the different ligands, and of the complexes of a particular ligand with different metal ions is also proposed.  相似文献   

    19.
    The mass spectrometric characterization of aqueous solutions of α‐ and β‐cyclodextrins (CDs) and o‐, m‐ and p‐coumaric acids (CAs) by negative ion electrospray ionization (ESI) indicates that the [CD+CA]? ions were sourced from the inclusion complex present in solution and from the anion attached to CD molecules formed in the spray processes. The anion adducts formed in the spray process contribute significantly to the signal intensity of an ionized inclusion complex thus overestimating the calculated stability constant (K) of solution‐phase complexes by one to two orders of magnitude. The relative intensities of anion adducts in mass spectra depend on the concentration ratio of the anion and the CD in spray droplets, while the relative intensity of the ionized inclusion complex depends on CD and CA concentrations in solutions and the value of K. Ion Mobility Spectrometry Mass Spectrometry [IMS‐MS] measurements show that the collision cross‐section (Ω) values of the [CD+CA]? or [(CD)2+CA]2? and [CD+CA] complex ions are 5–6% larger than or equal to CD? or [CD], respectively. Therefore, in the gas phase the anion adducts [CD+CA?] on cyclodextrin molecules possess the same conformations as the ionized inclusion complexes [CD+CA]?. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

    20.
    Three bis-macrocyclic ligands consisting of two N3-, N2S-, or NS2-cyclononane rings, i.e., of two octahydro-1H-1,4,7-triazonine, octahydro-1,4,7-thiadiazonine, or hexahydro-5H-1,4-7-dithiazonine rings, connected by a 1H-pyrazolediyl unit were prepared. They form dinuclear CuII and NiII complexes which are able to bind one additional exogenous bridging molecule such as Cl?, Br?, N, SO, and 1H-pyrazol-1-ide. The structures determined by X-ray diffraction show that each Cu2+ is coordinated by the three donor atoms of the macrocyclic ring, by a pyrazolidodiyl N-atom, by an atom of the exogenous bridging ligand, and sometimes by a solvent molecule. In the majority of the Cu2+ cases, the metal ion exhibits square-pyramidal or trigonal-bipyramidal coordination geometry, except in the sulfato-bridged complex, in which one Cu2+ is hexacoordinated with the participation of a water molecule. The X-ray structure of the azide-bridged dinuclear Ni2+ complex was also solved and shows that both Ni2+ centres have octahedral coordination geometries. In all complexes, the 1H-pyrazolediyl group connecting the macrocycles is deprotonated and bridges the two metal centres, which, depending on the exogenous ligand, have distances between 3.6 and 4.5 Å. In the dinuclear Cu2+ complexes, antiferromagnetic coupling is present. The azido-bridged complex shows a very strong interaction with ?2J ≥ 1040 cm?1; in contrast, the H-pyrazol-1-ide and chloride bridged species have ?2J values of 300 and 272cm?1, respectively. Cyclic voltammetry of the Cu2+ complexes in MeCN reveals a strong dependence of the potentials CuII/Cu-II → CuII/CuI → CuI/CuI on the nature of the donor atoms of the macrocycle as well as on the type of bridging molecule. The more S-donors are present in the macrocycle, the higher is the potential, indicating a stabilization of the Cu1 oxidation state.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号