首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
在非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波会出现误差较大甚至发散的问题。本文引入强跟踪自适应滤波器,建立对估计误差的一步预测方差PK/K-1的加权算法,来达到抑制噪声的目的;同时,针对初始对准对准精度与快速性的要求,建立了动基座传递对准精确的非线性滤波模型。通过计算机仿真,模拟了飞机机动模式,验证所提滤波器的可行性。最后,通过与扩展卡尔曼滤波的比较,说明非线性强跟踪自适应滤波器在对准精度与速度上都有更好的表现。  相似文献   

2.
当海况不佳时,水下航行器大幅晃动,捷联惯导系统无法快速完成自主初始对准,因此提出了利用多普勒计程仪提供的速度信息进行运动中辅助对准。针对在非线性对准中扩展卡尔曼滤波存在精度低,且需要计算雅可比矩阵等不足,提出了一种基于非线性预测滤波的求容积卡尔曼滤波算法。该滤波算法将惯性器件测量误差作为模型误差使用非线性预测滤波器进行实时预测,然后再利用求容积卡尔曼滤波对模型误差补偿后的系统进行状态估计。仿真结果表明,与扩展卡尔曼滤波和求容积卡尔曼滤波算法相比,该滤波算法能够不仅提高失准角特别是方位失准角的估计精度,其精度约为45″,而且加快了收敛速度。同时由于该滤波算法降低了系统状态的维数,因此也大大减少了计算量。  相似文献   

3.
基于多模型估计的捷联系统动基座对准   总被引:1,自引:0,他引:1  
采用卡尔曼滤波方法进行动基座对准过程中,载体挠曲运动等因素会导致系统噪声、量测噪声的不确定性,即系统参数的不确定性。将多模型估计理论应用于捷联系统动基座对准过程中,可以有效抑制系统不确定性因素的影响。建立了捷联惯导系统误差模型和引入外部位置、速度信息的量测模型,针对对准过程中系统噪声和量测噪声不确定的情况建立了多模型自适应估计器。在同等条件下进行了单一模型对准和利用多模型估计理论进行对准的仿真比较,结果显示:基于多模型估计的对准完成后捷联系统具有更高的导航精度;由此说明,动基座对准过程中,系统参数不确定的情况下,多模型估计器有更好的适用性。  相似文献   

4.
基于惯性导航基本方程的精确表达式,采用二次传递对准的概念与方法,对舰载高速导弹SINS/GPS组合导航系统的动基座传递对准进行了研究。传递对准方案的设计充分利用了垂直发射的特点,将传递对准分为两次进行。第一次对准利用载舰的机动运动,快速完成航向对准,同时初步完成水平对准。第二次对准利用导弹垂直发射和大加速度的特点精确而快速地实现水平对准。仿真结果表明:第一次对准在30s内使航向失准角的估计误差减少到3.05′;在垂直加速度为20g的情况下,第二次传递对准在10s的时间内使东向和北向两个失准角都能得到快速的估计,误差分别为0.4′和0.465′。  相似文献   

5.
由捷联惯导系统建模原因造成的导航误差随纬度升高会被急剧放大,是实现惯导系统全球初始对准所面临的主要问题之一,且现有多种编排方案共存的全球初始对准算法也不利于初始对准算法在全球范围内统一。另一方面,极地地区越来越小的地球自转水平分量,使得极点及其附近的静态自对准是无法实现的,且动基座初始对准也有利于提高导航系统的快速反应能力。基于此,提出了采用伪地球坐标系惯导编排来实现惯导系统的全球动基座初始对准,消除由惯导建模造成对全球初始对准性能的影响,并期望探索一种统一导航编排的全球初始对准算法。最后通过仿真证明了该算法的可行性。  相似文献   

6.
捷联罗经的动基座自对准技术   总被引:3,自引:0,他引:3  
在分析捷联罗经对准原理的基础上,改进了一种在航向和水平姿态完全未知条件下的捷联罗经对准方法,将对准方法划分为四个步骤:水平粗对准、航向估算、水平再对准和罗经航向对准,并给出了航向估算的公式.载体存在速度时会对罗经对准产生影响,因此提出了一种适用于捷联罗经的惯性传感器校正方法,推导了陀螺和加速度计信号校正的公式,将由于载体运动产生的陀螺和加速度计信号滤除,在此基础上结合上述的对准方法完成罗经自对准.对"匀速+晃动"、"加速+晃动"和"拐弯+晃动"三种情况下的罗经自对准进行了仿真,仿真结果证明该方法可以有效地实现运动基座下的罗经对准.  相似文献   

7.
针对惯性导航系统动基座初始对准问题,提出了一种视觉辅助的惯导系统动基座初始对准方法。建立了视觉与惯导系统测量模型,考虑了特征点位置已知和未知两种情形,分别推导了视觉和惯导系统姿态位置间的关系,设计了EKF滤波器。建立了两种情形下的滤波观测方程,设计了晃动基座初始对准仿真实验,结果表明在视觉特征点位置已知和未知两种条件下,滤波器状态均能收敛,特征点位置已知时收敛时间小于30 s,特征点位置未知时收敛时间约为300 s;在陀螺零偏为0.01(°)/h、加速度计零偏为50μg的仿真条件下,对准精度为水平姿态角优于0.004°,方位角优于0.06°。提出的视觉辅助惯导系统动基座初始对准是一条较新且可行的思路。  相似文献   

8.
捷联惯性导航系统大方位失准角的误差模型是非线性的,传统的扩展卡尔曼滤波(Extended Kalman Filter, EKF)会产生线性化误差,影响初始对准精度.在给出捷联惯性导航系统动基座大方位失准角误差模型的基础上,推导了粒子滤波方法(Particle Filter, PF),并将扩展卡尔曼滤波、基于Scaled-Unscented变换的Unscented卡尔曼滤波(Unscented Kalman filter, UKF)和基于Residual重采样的粒子滤波用于捷联惯性导航系统的初始对准中,分别进行了加速和拐弯条件下的初始对准实验仿真.仿真结果表明,在大失准角情况下,粒子滤波相对于扩展卡尔曼滤波和Unscented卡尔曼滤波具有更高的对准精度和更快的收敛速度.  相似文献   

9.
GPS/SINS组合导航系统的动基座快速初始对准方法   总被引:4,自引:0,他引:4  
—本文首先建立了SINS的误差模型,并对系统模型进行了可观测性分析,然后基于SINS误差模型的特点,通过对所采用卡尔曼滤波器仿真结果的分析,提出了一种快速估计方位失准角D的方法,从而大大缩短了初始对准时间,提高了对准速度。最后计算机仿真结果表明了该方法的有效性。  相似文献   

10.
基于新型滤波器-HABF的SINS传递对准仿真   总被引:1,自引:0,他引:1  
传统动基座传递对准主要采用扩展卡尔曼滤波技术。但在动基座传递对准的非线性、非高斯条件下,这种基于模型线性化和高斯假设的滤波方法在估计系统状态及其方差时误差较大且可能发散。混合退火粒子滤波针对非线性、非高斯系统状态的在线估计问题,提出一种新的基于序贯重要性抽样的粒子滤波算法。在滤波算法中,用状态参数分解和退火系数来产生重要性概率密度函数,此概率密度函数综合考虑了转移先验、似然、噪声的统计特性以及最新的观察数据,因此更接近于系统状态的后验概率。实验仿真结果表明,这种基于混合退火粒子滤波器不仅比扩展卡尔曼滤波提高了传递对准的精度,而且又比传统的粒子算法减少了时间。  相似文献   

11.
针对多普勒测速仪(DVL)辅助捷联惯导系统行进间对准时易受DVL量测噪声的影响,提出一种基于参数识别的SINS/DVL初始对准方法。首先,建立了基于DVL辅助的SINS行进间初始对准观测矢量模型,分析了DVL量测噪声对观测矢量的影响;然后,研究了观测矢量变化规律,建立了观测矢量参数识别模型,利用建立的参数识别模型,设计了基于自适应卡尔曼滤波的参数识别算法,并对观测矢量进行了重构,减小了DVL量测噪声对观测矢量的影响;最后,设计了仿真与跑车实验。实验结果表明,所提出的参数识别算法可以有效抑制DVL量测噪声对初始对准结果的影响。相较于传统方法,在载体运动条件下实现对准误差标准差小于0.1°。  相似文献   

12.
针对车载行进间对准过程中存在复杂路面和未知干扰的情况,提出基于强跟踪滤波的里程计辅助车载捷联惯导行进间对准方法。采用多重渐消因子的强跟踪滤波器进行车载行进间精对准。多重渐消因子的强跟踪滤波器利用卡尔曼滤波取得最佳增益时残差序列互不相关的性质,在线自适应地调整渐消因子,对未知干扰有较强的鲁棒性。建立行进间对准的状态方程与观测方程,针对三种不同路况进行了8次跑车行进间对准试验。试验结果表明:强跟踪滤波能适应恶劣复杂路况;精对准后航向误差(1?)≤3.6′,满足指标要求。  相似文献   

13.
提出了一种适用于制导炮弹上低精度MEMS IMU/GPS组合系统的飞行中初始对准算法。通过引入辅助的载体惯性系和导航惯性系,将所求姿态四元数分解为三部分:第一部分描述载体系相对于载体惯性系的姿态,由MEMS陀螺仪输出积分求解;第二部分描述导航系相对于导航惯性系的姿态,利用GPS位置输出解析求解;第三部分描述两辅助惯性系的相对姿态,采用Re-quest算法完成解算。详细讨论了算法误差、有效性条件,并对Re-quest算法进行了优化和简化。蒙特卡洛仿真结果表明,在弹体加速度以指数规律变化条件下,对准算法可以在10 s时间内达到水平误差小于0.2°(1?)、航向误差小于0.4°(1σ)的精度,完全满足制导炮弹组合系统初始对准的精度要求。  相似文献   

14.
针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。  相似文献   

15.
捷联惯导系统改进参数辨识初始对准方法   总被引:1,自引:0,他引:1  
在线晃动干扰环境下,现有捷联惯导系统(SINS)参数辨识初始对准算法的观测方程建模存在不足,对准收敛速度和精度都会受到影响。提出了改进参数辨识初始对准算法,将计算干扰速度的平均值列入辨识模型参数,提高了初始对准的收敛速度和对准精度,此外,还推导了比力双重积分的参数辨识模型,有利于进一步抑制晃动干扰的影响。仿真结果表明,改进算法消除了现有对准算法中可能存在的固有偏差,获得更加平滑的失准角估计效果。  相似文献   

16.
针对载机未装备主惯导系统的弹载捷联惯导初始对准问题,提出了一种基于机载GPS信息的动基座传递对准算法。首先利用惯性凝固思想设计了基于比力积分和GPS速度信息的惯性系粗对准算法,粗略估计弹载惯导的初始姿态;然后通过分析惯导系统在惯性系下的导航误差方程,设计了基于GPS信息的"速度+位置"匹配卡尔曼滤波精对准算法,对粗对准误差做进一步估计补偿。车载试验结果为:与车载激光捷联惯导输出相比,水平和方位对准精度分别为6’和18’。试验验证了该算法的有效性,为未装备机载主惯导的弹载捷联惯导的快速初始化提供了工程应用参考。  相似文献   

17.
针对机载SINS/GPS组合导航系统地面静基座对准时间较长的问题,提出了一种基于GPS观测量和模型预测滤波(MPF)的机载SINS/GPS空中开机自对准方法。该方法首先在载机匀速直线飞行阶段进行SINS/GPS空中开机粗对准,利用GPS获得初始位置、速度和航向,利用加速度计的输出信息计算两个初始水平姿态角;然后在载机进入最优S机动飞行段进行SINS空中精对准,采用MPF和EKF相结合的滤波器估计SINS的误差并进行校正。计算机仿真结果表明,该方法实现了SINS的空中开机自对准,大大缩短飞机的地面准备时间,空中开机粗对准的方位角误差小于15°,俯仰角和横滚角误差小于2°,而空中精对准的方位角、俯仰角和横滚角的估计误差分别达到了67.36〞、47.31〞和-32.52〞。  相似文献   

18.
针对晃动基座捷联惯导初始对准问题,研究了一种具有干扰抑制能力的初始对准算法。根据重力矢量在惯性空间投影构成一包含地球北向信息的旋转锥面的现象,利用坐标系惯性凝固假设将重力量测矢量和参考矢量分别投影到载体惯性坐标系和导航惯性坐标系,将晃动基座条件下的初始对准转化为基于重力量测矢量确定对准起始时刻的姿态问题。借鉴四元数线性伪量测方程的概念,利用重力投影矢量与初始姿态四元数的线性量测关系实现初始姿态四元数的直接滤波估计。初始姿态四元数在对准过程中为常值,以其作为待估计的状态可避免系统模型误差和初始误差的影响。利用转台模拟不同的摇摆对准环境,导航级惯导系统可在10 min内完成初始对准且方位误差小于3’。  相似文献   

19.
针对传统基于视速度双矢量粗对准中,由于传感器随机噪声的影响,存在对准精度差,收敛速度慢的缺点,提出了一种新型自适应Kalman滤波的参数识别粗对准方法。该方法通过对视速度运动进行建模,设计采用自适应Kalman滤波对模型参数进行参数识别,从而有效地消除视运动中的随机噪声,提高粗对准的精度和收敛速度。由于自适应滤波的特点,新方法不需要对传感器误差进行统计,使其在实际系统中具有更加广泛的应用价值。针对双矢量粗对准的计算特点,设计了一种矢量重构算法,从而尽可能地规避双矢量共线性问题,加快了粗对准的收敛过程。仿真与转台实验表明,与传统方法对比,新方法在相同的对准时间内具有更高的对准精度,在相同的对准精度下,具有更高的收敛速度。转台实验的最终对准精度为-0.1391°,标准差为0.012°。  相似文献   

20.
针对捷联惯性导航系统的方位误差对系统误差特别敏感,容易引起闭环卡尔曼滤波初始对准的发散,提出了一种基于重构伪地球坐标系惯导机械编排的初始对准算法。重构伪地球坐标系惯导编排方案在初始位置实现了线性运动误差和方位误差之间解耦,从而消除了导航坐标系旋转角速度误差对方位对准的影响。因此该算法可以减小由系统误差引起的方位对准估计振荡,从而降低了对准系统发散的可能性,进而提高对准系统的稳定性,并改善了捷联惯导初始对准的性能。另外,它不仅适用于常规纬度初始对准,也可以解决极区静态对准问题。最后,常规纬度和极区静态对准仿真证明了该算法具有优良性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号