首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了进一步提高MEMS陀螺的动态范围和振动环境适应性,以加速其工程化应用步伐,研究了陀螺振动误差,提出了一种新型MEMS陀螺结构。MEMS陀螺仍然采用了音叉结构形式,同时采用了工字型框架和隔离结构,从而提高了陀螺结构的稳定性和抗振动性能,并降低了残余应力对陀螺影响。理论分析了驱动和检测模态频差对标度因数非线性的影响,并基于理论和实验分析了振动环境中的角振动对陀螺性能的影响。在此基础上,进行了陀螺的模态优化设计,以进一步减小了陀螺的振动灵敏度,并使其具有大动态范围。MEMS陀螺采用了SOI圆片制备,并采用了圆片级真空封装技术实现陀螺芯片的真空封装。MEMS陀螺芯片和ASIC芯片叠装在陶瓷管壳内,体积为11.4?11.4?3.8 mm3。实验结果表明,MEMS陀螺的测量范围为±7200 (°)/s,零偏稳定性为12.2 (°)/h(1σ)。随机振动环境下(7.6grms),该陀螺的振中零偏变化量小于10.0 (°)/h,振中的零偏稳定性小于24.0 (°)/h,是原陀螺的1/5。  相似文献   

2.
光纤陀螺在振动环境下的输出具有噪声大、漂移强的特性,必须建立合理的振动误差模型,以便使用精确的算法进行补偿,从而提高光纤陀螺的输出精度。文中首先使用Allan方差分析法分析了某型号的数字闭环光纤陀螺在振动环境下的输出信号,随后利用提升小波分离出了光纤陀螺误差模型中的白噪声及漂移误差,并提出了基于灰色理论和RBF神经网络的漂移误差建模方法。仿真结果表明,相较于传统的RBF神经网络模型,基于提升小波的灰色RBF神经网络的漂移误差建模方法能有效滤除白噪声,并将漂移误差模型的建模精度提高了一倍左右。该方法能够有效提高光纤陀螺在振动环境下的输出精度,对光纤陀螺在振动环境下的误差研究具有重要指导意义。  相似文献   

3.
为了减小MEMS陀螺仪的正交误差,进一步提高陀螺精度,在Simulink环境中对陀螺结构和测控系统进行了建模和仿真。首先在理想状态的陀螺结构模型基础上建立了包含机械热噪声、模态间耦合等非理想因素的结构模型,并给出了陀螺结构的相关设计参数。其次在陀螺结构模型上以自激振荡和AGC控制技术为基础设计了驱动回路,该回路可在短时间内将驱动幅度稳定在10μm,且驱动频率为4048 Hz(驱动模态的谐振频率)。然后分析了模态间耦合信号的作用方式并建立了正交校正和检测闭环力反馈回路,仿真结果显示,在全闭环状态下检测模态所受耦合力的幅度比未校正状态下降了5个数量级,等效输入角速度也从205(°)/s下降到了6.58(°)/h。最后对陀螺模型进行了整体测试,得到其标度因数和阈值分别为21.76 mV/(°)/s和0.002(°)/s。  相似文献   

4.
根据二阶质量-弹簧-阻尼系统的幅频特性和相频特性关于谐振频率对称的特点,提出了一种低频振荡激励的实时模态匹配技术,根据检测模态的输出响应来判别驱动模态和检测模态的匹配程度。首先简要介绍了带频率调谐功能的双质量线振动硅微陀螺仪,该陀螺利用负刚度效应来调节检测模态的谐振频率;然后通过理论推导以及系统仿真验证了基于低频调制激励的自动模态匹配技术的可行性和有效性;最后设计了一种基于现场可编程逻辑阵列(FPGA)的数字控制电路,并且对同一测试陀螺进行了模态匹配和模态不匹配下的性能对比。试验结果表明,相比模态不匹配条件下,陀螺零偏稳定性从5.89(°)/h提高到1.26(°)/h,角度随机游走从0.36(°)/√h提高到0.079(°)/√h,性能分别提高了4.7倍和4.6倍。  相似文献   

5.
抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的光电探测组件电源抑制比测试方案,通过测量普通运算放大器的电源抑制比并与手册给定的典型值进行对比,校验了测试系统的准确性。以中低精度光纤陀螺调制-解调频率范围为例,利用该测试系统测量了光电探测组件100 k Hz~3 MHz内电源抑制比频率特性曲线。实验结果表明,光电探测组件的电源抑制比呈明显的高通特性,在100 k Hz频率点处+PSRR约为29.5 d B,到达3 MHz处衰减为17.8 d B,为后续计算电源传导干扰抑制要求和优化电源退耦网络提供了依据。  相似文献   

6.
半球谐振陀螺是一种新型固体振动陀螺,具备功耗低、寿命长、稳定性高等特点,可完美适应卫星的姿态控制。针对微小卫星应用需求,利用半球谐振陀螺构建了星载惯性测量单元。首先,通过测量单元硬件结构设计,对其内部空间进行优化,并通过力学特性及力学试验仿真分析,验证其机械可靠性。其次,针对微小卫星应用环境优化半球谐振陀螺电路设计,提高惯性测量单元可靠性。最后,力学环境试验结果表明,三轴半球谐振陀螺的零偏稳定性均优于0.1°/h,敏感器件满足标度因数非线性度≤500ppm和零偏稳定性≤0.1°/h(1σ)的要求,实现了满足微小卫星应用需求的低成本、小体积、高可靠的半球谐振陀螺星载惯性测量单元。  相似文献   

7.
基于Sagnac效应的光纤陀螺(FOG),因其自身的优点广泛地应用在捷联惯性导航系统中(SINS)。然而,温度对FOG的影响包括常值影响和随机影响,仍是制约光纤陀螺性能的关键因素之一。针对不同性质的漂移,首先建立基于相关性分析的多项式模型补偿常值漂移;然后结合时间序列分析的方法,利用Kalman滤波抑制经多项式模型补偿后残差信号中的随机成分,进一步提高FOG的精度。单轴光纤陀螺试验结果表明,传统的单多项式补偿模型,FOG的零偏稳定性能由0.05(°)/h仅提高到0.04(°)/h;采用常值和随机的双补偿模型,FOG的零偏稳定性能由0.05(°)/h提高到了0.01(°)/h。证明了双温度建模与补偿方法的有效性,在工程上有一定的参考价值。  相似文献   

8.
光纤耦合器稳定性分析及对光纤陀螺的影响   总被引:3,自引:0,他引:3  
为提高光纤耦合器性能稳定性,减少其对光纤陀螺输出的影响,首先建立了耦合器分光比与各参数间关系的数学模型,分析了环境变化对单模耦合器分光比稳定性的影响;其次建立了分光比稳定性与光纤陀螺输出误差间关系的数学模型,仿真与实验结果表明,当光纤陀螺存在角加速度时,光纤耦合器分光比变化率越大,光纤陀螺输出误差越大。当分光比变化率△C.R1.4E-03/s,不到1min即可使光纤陀螺输出误差ε0.001(°)/h,对中高精度光纤陀螺的输出准确度将造成严重影响。提出了降低光纤耦合器分光比变化率的一些方法,对光纤陀螺的光路设计和耦合器的适当选取具有较大参考价值。  相似文献   

9.
微机械环形振动陀螺仪采用四波腹工作原理,具有精度高、抗冲击性能好等优点。通常情况下为了提高电容值和信噪比,环形结构会采用高深宽比方案,因此带来的footing效应直接影响了结构加工的成品率。本文在设计环形结构的基础上提出了一种在硅下表面溅射一层Al金属层的方法,能够避免footing效应的发生。实验结果表明,该方法有效提高了结构加工精度。同时,为了验证所设计结构的正确性,对加工出的结构进行了扫频测试,结构驱动模态谐振频率与设计值相差仅0.13%,并在此基础上搭建了测控系统,进一步进行了静态实验,结果表明其零偏稳定性指标为101(°)/h证明了设计和加工的可行性。  相似文献   

10.
随着光纤陀螺的实用化,发现载体振动会引起光纤陀螺尤其是高精度光纤陀螺的测量误差增大,对光纤陀螺的性能指标造成不可忽视的影响。对干涉式数字闭环光纤陀螺,从弹光效应出发,分析了振动对光纤陀螺光路的影响机理,得出了振动影响下光纤环中反向传播的光信号非互易相移误差信号的表现形式,并针对此提出了通过合理安装光纤环,使光路满足互异性,来抑制振动情况下光纤陀螺输出信号噪声和漂移。实验结果表明,该方案有效降低光纤陀螺输出信号的噪声,抑制了由振动引起的陀螺漂移,使得陀螺振动误差减小了一个数量级。  相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
13.
14.
The present paper deals with development and design of new methods utilizing Wiedemann's effect for determination of state of strain in building structures. Wiedemann's effect and some features of torsional strain of magnetic field are the basis of new experimental method. Especially the point electromagnetic strain gages using the effect of pure torsion of electromagnetic field to enable universal examination. For strain-gage measurements, almost all physical quantities are used which can be related to the variation in length of the structures. From the electric strain measurements, the most commonly used methods are the measurements by resonance-wire strain gages or by electric-resistance strain gages. In this paper, electromagnetic strain gages are discussed using the Wiedemann effect, and the author describes some new measuring equipment and his own suggestions and methods based on an application of this effect.  相似文献   

15.
16.
17.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号