首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A k‐critical (multi‐) graph G has maximum degree k, chromatic index χ′(G) = k + 1, and χ′(Ge) < k + 1 for each edge e of G. For each k ≥ 3, we construct k‐critical (multi‐) graphs with certain properties to obtain counterexamples to some well‐known conjectures. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 27–36, 1999  相似文献   

2.
Let G be a multigraph with edge set E(G). An edge coloring C of G is called an edge covered coloring, if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k edge covered coloring is called the edge covered chromatic index of G and is denoted by . A graph G is said to be of class if and otherwise of class. A pair of vertices {u,v} is said to be critical if . A graph G is said to be edge covered critical if it is of class and every edge with vertices in V(G) not belonging to E(G) is critical. Some properties about edge covered critical graphs are considered.  相似文献   

3.
A graph G with maximum degree Δ and edge chromatic number χ′(G)>Δ is edge‐Δ‐critical if χ′(G?e)=Δ for every edge e of G. It is proved here that the vertex independence number of an edge‐Δ‐critical graph of order n is less than . For large Δ, this improves on the best bound previously known, which was roughly ; the bound conjectured by Vizing, which would be best possible, is . © 2010 Wiley Periodicals, Inc. J Graph Theory 66:98‐103, 2011  相似文献   

4.
We introduce a unifying framework for studying edge‐coloring problems on multigraphs. This is defined in terms of a rooted directed multigraph , which is naturally associated to the set of fans based at a given vertex u in a multigraph G. We call the “Fan Digraph.” We show that fans in G based at u are in one‐to‐one correspondence with directed trails in starting at the root of . We state and prove a central theorem about the fan digraph, which embodies many edge‐coloring results and expresses them at a higher level of abstraction. Using this result, we derive short proofs of classical theorems. We conclude with a new, generalized version of Vizing's Adjacency Lemma for multigraphs, which is stronger than all those known to the author. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 301–318, 2006  相似文献   

5.
《Journal of Graph Theory》2018,87(2):188-207
We describe an algorithm for generating all k‐critical ‐free graphs, based on a method of Hoàng et al. (A graph G is k‐critical H‐free if G is H‐free, k‐chromatic, and every H‐free proper subgraph of G is ‐colorable). Using this algorithm, we prove that there are only finitely many 4‐critical ‐free graphs, for both and . We also show that there are only finitely many 4‐critical ‐free graphs. For each of these cases we also give the complete lists of critical graphs and vertex‐critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 3‐colorability problem in the respective classes. In addition, we prove a number of characterizations for 4‐critical H‐free graphs when H is disconnected. Moreover, we prove that for every t, the class of 4‐critical planar ‐free graphs is finite. We also determine all 52 4‐critical planar P7‐free graphs. We also prove that every P11‐free graph of girth at least five is 3‐colorable, and show that this is best possible by determining the smallest 4‐chromatic P12‐free graph of girth at least five. Moreover, we show that every P14‐free graph of girth at least six and every P17‐free graph of girth at least seven is 3‐colorable. This strengthens results of Golovach et al.  相似文献   

6.
《Journal of Graph Theory》2018,88(4):566-576
The star chromatic index of a multigraph G, denoted , is the minimum number of colors needed to properly color the edges of G such that no path or cycle of length four is bicolored. A multigraph G is star k‐edge‐colorable if . Dvořák, Mohar, and Šámal [Star chromatic index, J. Graph Theory 72 (2013), 313–326] proved that every subcubic multigraph is star 7‐edge‐colorable. They conjectured in the same article that every subcubic multigraph should be star 6‐edge‐colorable. In this article, we first prove that it is NP‐complete to determine whether for an arbitrary graph G. This answers a question of Mohar. We then establish some structure results on subcubic multigraphs G with such that but for any , where . We finally apply the structure results, along with a simple discharging method, to prove that every subcubic multigraph G is star 6‐edge‐colorable if , and star 5‐edge‐colorable if , respectively, where is the maximum average degree of a multigraph G. This partially confirms the conjecture of Dvořák, Mohar, and Šámal.  相似文献   

7.
In this paper, we study the critical point‐arboricity graphs. We prove two lower bounds for the number of edges of k‐critical point‐arboricity graphs. A theorem of Kronk is extended by proving that the point‐arboricity of a graph G embedded on a surface S with Euler genus g = 2, 5, 6 or g ≥ 10 is at most with equality holding iff G contains either K2k?1 or K2k?4 + C5 as a subgraph. It is also proved that locally planar graphs have point‐arboricity ≤ 3 and that triangle‐free locally planar‐graphs have point‐arboricity ≤ 2. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 50–61, 2002  相似文献   

8.
In the article “The average degree of an edge-chromatic critical graph II” by Douglas R. Woodall (J. Graph Theory 56 (2007), 194-218), it was claimed that the average degree of an edge-chromatic critical graph with maximum degree Δ is at least ◂⋅▸23(Δ+1) if Δ2, at least ◂+▸23Δ+1 if Δ8, and at least ◂⋅▸23(Δ+2) if Δ15. Unfortunately there were mistakes in the proof of the last two of these results, which are now proved only if Δ18 and Δ30, respectively.  相似文献   

9.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

11.
We prove that, for any given vertex υ* in a series-parallel graph G, its edge set can be partitioned into k = min{κ'(G) + 1,δ(G)} subsets such that each subset covers all the vertices of G possibly except for υ*, where δ(G) is the minimum degree of G and κ'(G) is the edge-connectivity of G. In addition, we show that the results in this paper are best possible and a polynomial time algorithm can be obtained for actually finding such a partition by our proof.  相似文献   

12.
An edge‐face coloring of a plane graph with edge set E and face set F is a coloring of the elements of EF so that adjacent or incident elements receive different colors. Borodin [Discrete Math 128(1–3):21–33, 1994] proved that every plane graph of maximum degree Δ?10 can be edge‐face colored with Δ + 1 colors. We extend Borodin's result to the case where Δ = 9. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:332‐346, 2011  相似文献   

13.
An edge‐coloring of a graph G with colors is called an interval t‐coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991, Erd?s constructed a bipartite graph with 27 vertices and maximum degree 13 that has no interval coloring. Erd?s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph that is not interval colorable. On the other hand, in 1992, Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this article, we give some methods for constructing of interval non‐edge‐colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs that have no interval coloring, contain 20, 19, 21 vertices and have maximum degree 11, 12, 13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.  相似文献   

14.
We prove that, for any given vertex ν* in a series-parallel graph G, its edge set can be partitioned into κ = min{κ′(G) + 1, δ(G)} subsets such that each subset covers all the vertices of G possibly except for ν*, where δ(G) is the minimum degree of G and κ′(G) is the edge-connectivity of G. In addition, we show that the results in this paper are best possible and a polynomial time algorithm can be obtained for actually finding such a partition by our proof.  相似文献   

15.
《Journal of Graph Theory》2018,88(3):521-546
Correspondence coloring, or DP‐coloring, is a generalization of list coloring introduced recently by Dvořák and Postle [11]. In this article, we establish a version of Dirac's theorem on the minimum number of edges in critical graphs [9] in the framework of DP‐colorings. A corollary of our main result answers a question posed by Kostochka and Stiebitz [15] on classifying list‐critical graphs that satisfy Dirac's bound with equality.  相似文献   

16.
We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013  相似文献   

17.
18.
An interval coloring of a graph G is a proper coloring of E(G) by positive integers such that the colors on the edges incident to any vertex are consecutive. A (3,4)‐biregular bigraph is a bipartite graph in which each vertex of one part has degree 3 and each vertex of the other has degree 4; it is unknown whether these all have interval colorings. We prove that G has an interval coloring using 6 colors when G is a (3,4)‐biregular bigraph having a spanning subgraph whose components are paths with endpoints at 3‐valent vertices and lengths in {2, 4, 6, 8}. We provide several sufficient conditions for the existence of such a subgraph. © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

19.
P. Erd?s conjectured in [2] that r‐regular 4‐critical graphs exist for every r ≥ 3 and noted that no such graphs are known for r ≥ 6. This article contains the first example of a 6‐regular 4‐critical graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 286–291, 2002  相似文献   

20.
We consider graphs G with such that and for every edge e, so‐called critical graphs. Jakobsen noted that the Petersen graph with a vertex deleted, , is such a graph and has average degree only . He showed that every critical graph has average degree at least , and asked if is the only graph where equality holds. A result of Cariolaro and Cariolaro shows that this is true. We strengthen this average degree bound further. Our main result is that if G is a subcubic critical graph other than , then G has average degree at least . This bound is best possible, as shown by the Hajós join of two copies of .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号