首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let C be a longest cycle in the 3‐connected graph G and let H be a component of G ? V(C) such that |V(H)| ≥ 3. We supply estimates of the form |C| ≥ 2d(u) + 2d(v) ? α(4 ≤ α ≤ 8), where u,v are suitably chosen non‐adjacent vertices in G. Also the exceptional classes for α = 6,7,8 are characterized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
For a graph G and an integer k ≥ 1, let ςk(G) = dG(vi): {v1, …, vk} is an independent set of vertices in G}. Enomoto proved the following theorem. Let s ≥ 1 and let G be a (s + 2)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, ς2(G) − s} passing through any path of length s. We generalize this result as follows. Let k ≥ 3 and s ≥ 1 and let G be a (k + s − 1)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, − s} passing through any path of length s. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 177–184, 1998  相似文献   

3.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

4.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Let h ≥ 6 be an integer, let G be a 3-connected graph with ∣V(G)∣ ≥ h − 1, and let x and z be distinct vertices of G. We show that if for any nonadjacent distinct vertices u and v in V(G) − {x, z}, the sum of the degrees of u and v in G is greater than or equal to h, then for any subset Y of V(G) − {x, z} with ∣Y∣ ≤ 2, G contains a path which has x and z as its endvertices, passes through all vertices in Y, and has length at least h − 2. We also show a similar result for cycles in 2-connected graphs.  相似文献   

6.
We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ (G) − 1}. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

8.
For a graph G, p(G) denotes the order of a longest path in G and c(G) the order of a longest cycle. We show that if G is a connected graph n ≥ 3 vertices such that d(u) + d(v) + d(w) ≧ n for all triples u, v, w of independent vertices, then G satisfies c(G) ≥ p(G) – 1, or G is in one of six families of exceptional graphs. This generalizes results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman. © 1995, John Wiley & Sons, Inc.  相似文献   

9.
The distancedG(u,v) between two vertices u and v in a connected graph G is the length of the shortest (u,v) path in G. A (u,v) path of length dG(u,v) is called a (u,v)-geodesic. A set XV is called weakly convex in G if for every two vertices a,bX, exists an (a,b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all a,bX all vertices from every (a,b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.  相似文献   

10.
For a connected noncomplete graph G, let μ(G):=min{max {dG(u), dG(v)}:dG(u, v)=2}. A well‐known theorem of Fan says that every 2‐connected noncomplete graph has a cycle of length at least min{|V(G)|, 2μ(G)}. In this paper, we prove the following Fan‐type theorem: if G is a 3‐connected noncomplete graph, then each pair of distinct vertices of G is joined by a path of length at least min{|V(G)|?1, 2μ(G)?2}. As consequences, we have: (i) if G is a 3‐connected noncomplete graph with , then G is Hamilton‐connected; (ii) if G is a (s+2)‐connected noncomplete graph, where s≥1 is an integer, then through each path of length s of G there passes a cycle of length≥min{|V(G)|, 2μ(G)?s}. Several results known before are generalized and a conjecture of Enomoto, Hirohata, and Ota is proved. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 265–282, 2002 DOI 10.1002/jgt.10028  相似文献   

11.
Given a graph G = (V, E), a set W í V{W \subseteq V} is said to be a resolving set if for each pair of distinct vertices u, v ? V{u, v \in V} there is a vertex x in W such that d(u, x) 1 d(v, x){d(u, x) \neq d(v, x)} . The resolving number of G is the minimum cardinality of all resolving sets. In this paper, conditions are imposed on resolving sets and certain conditional resolving parameters are studied for honeycomb and hexagonal networks.  相似文献   

12.
For S ? V(G) the S-center and S-centroid of G are defined as the collection of vertices uV(G) that minimize es(u) = max {d(u, v): vS} and ds(u) = ∑u∈S d(u, v), respectively. This generalizes the standard definition of center and centroid from the special case of S = V(G). For 1 ? k ?|V(G)| and uV(G) let rk(u) = max {∑sS d(u, s): S ? V(G), |S| = k}. The k-centrum of G, denoted C(G; k), is defined to be the subset of vertices u in G for which rk(u) is a minimum. This also generalizes the standard definitions of center and centroid since C(G; 1) is the center and C(G; |V(G)|) is the centroid. In this paper the structure of these sets for trees is examined. Generalizations of theorems of Jordan and Zelinka are included.  相似文献   

13.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

14.
For an integer i, a graph is called an Li-graph if, for each triple of vertices u, v, w with d(u, v) = 2 and w (element of) N(u) (intersection) N(v), d(u) + d(v) ≥ | N(u) (union) N(v) (union) N(w)| —i. Asratian and Khachatrian proved that connected Lo-graphs of order at least 3 are hamiltonian, thus improving Ore's Theorem. All K1,3-free graphs are L1-graphs, whence recognizing hamiltonian L1-graphs is an NP-complete problem. The following results about L1-graphs, unifying known results of Ore-type and known results on K1,3-free graphs, are obtained. Set K = lcub;G|Kp,p+1 (contained within) G (contained within) Kp V Kp+1 for some ρ ≥ } (v denotes join). If G is a 2-connected L1-graph, then G is 1-tough unless G (element of) K. Furthermore, if G is as connected L1-graph of order at least 3 such that |N(u) (intersection) N(v)| ≥ 2 for every pair of vertices u, v with d(u, v) = 2, then G is hamiltonian unless G ϵ K, and every pair of vertices x, y with d(x, y) ≥ 3 is connected by a Hamilton path. This result implies that of Asratian and Khachatrian. Finally, if G is a connected L1-graph of even order, then G has a perfect matching. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
 Let p(G) and c(G) denote the number of vertices in a longest path and a longest cycle, respectively, of a finite, simple graph G. Define σ4(G)=min{d(x 1)+d(x 2)+ d(x 3)+d(x 4) | {x 1,…,x 4} is independent in G}. In this paper, the difference p(G)−c(G) is considered for 2-connected graphs G with σ4(G)≥|V(G)|+3. Among others, we show that p(G)−c(G)≤2 or every longest path in G is a dominating path. Received: August 28, 2000 Final version received: May 23, 2002  相似文献   

16.
The following question was raised by Bruce Richter. Let G be a planar, 3‐connected graph that is not a complete graph. Denoting by d(v) the degree of vertex v, is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), 6} for all vV(G)? More generally, we ask for which pairs (r, k) the following question has an affirmative answer. Let r and k be the integers and let G be a K5‐minor‐free r‐connected graph that is not a Gallai tree (i.e. at least one block of G is neither a complete graph nor an odd cycle). Is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), k} for all vV(G)? We investigate this question by considering the components of G[Sk], where Sk: = {vV(G)|d(v)8k} is the set of vertices with small degree in G. We are especially interested in the minimum distance d(Sk) in G between the components of G[Sk]. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:18–30, 2012  相似文献   

17.
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian. J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen, Germany.  相似文献   

18.
For a vertex v of a graph G, we denote by d(v) the degree of v. The local connectivity κ(u, v) of two vertices u and v in a graph G is the maximum number of internally disjoint uv paths in G, and the connectivity of G is defined as κ(G)=min{κ(u, v)|u, vV(G)}. Clearly, κ(u, v)?min{d(u), d(v)} for all pairs u and v of vertices in G. Let δ(G) be the minimum degree of G. We call a graph G maximally connected when κ(G)=δ(G) and maximally local connected when for all pairs u and v of distinct vertices in G. In 2006, Hellwig and Volkmann (J Graph Theory 52 (2006), 7–14) proved that a connected graph G with given clique number ω(G)?p of order n(G) is maximally connected when As an extension of this result, we will show in this work that these conditions even guarantee that G is maximally local connected. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 192–197, 2010  相似文献   

19.
Let G be a connected graph and let eb(G) and λ(G) denote the number of end‐blocks and the maximum number of disjoint 3‐vertex paths Λ in G. We prove the following theorems on claw‐free graphs: (t1) if G is claw‐free and eb(G) ≤ 2 (and in particular, G is 2‐connected) then λ(G) = ⌊| V(G)|/3⌋; (t2) if G is claw‐free and eb(G) ≥ 2 then λ(G) ≥ ⌊(| V(G) | − eb(G) + 2)/3 ⌋; and (t3) if G is claw‐free and Δ*‐free then λ(G) = ⌊| V(G) |/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ‐factor: Let n and p be integers, 1 ≤ pn − 2, G a 2‐connected graph, and |V(G)| = 3n. Suppose that GS has a Λ‐factor for every SV(G) such that |S| = 3p and both V(G) − S and S induce connected subgraphs in G. Then G has a Λ‐factor. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 175–197, 2001  相似文献   

20.
The distance d G (u, v) between two vertices u and v in a connected graph G is the length of the shortest uv-path in G. A uv-path of length d G (u, v) is called a uv-geodesic. A set X is convex in G if vertices from all ab-geodesics belong to X for any two vertices a, b ?? X. The convex domination number ??con(G) of a graph G equals the minimum cardinality of a convex dominating set. In the paper, Nordhaus-Gaddum-type results for the convex domination number are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号