首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, we propose an SIS epidemic model for which population births occur during a single period of the year. Using the discrete map, we obtain exact periodic solutions of system which is with Ricker function. The existence and stability of the infection-free periodic solution and the positive periodic solution are investigated. The Poincaré map, the center manifold theorem and the bifurcation theorem are used to discuss flip bifurcation and bifurcation of the positive periodic solution. Numerical results imply that the dynamical behaviors of the epidemic model with birth pulses are very complex, including small-amplitude periodic 1 solution, large-amplitude multi-periodic cycles, and chaos. This suggests that birth pulse, in effect, provides a natural period or cyclicity that allow for a period-doubling route to chaos.  相似文献   

2.
This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.  相似文献   

3.
This investigation utilizes available biokinetic information for the formulation of a diffusion-reaction model in order to simulate the in vivo behavior of acetylcholinesterase (AChE) and cholineacetyltransferase (ChAT) coupled enzymes system. A novel two-enzymes/two-compartments model is used to explore the bifurcation and chaotic behavior of this enzyme system simulating the acetylcholine neurocycle in the brain. Detailed bifurcation analysis over a wide range of parameters is carried out in order to uncover some important information about this system. The results of this investigation relate to the phenomena occurring in the physiological experiments, like periodic stimulation of neural cells and non-regular functioning of acetylcholine receptors. These results can be used to direct more systematic research on cholinergic brain diseases like Alzheimer’s and Parkinson’s diseases as there are strong evidences that these brain disorders are related to concentration of acetylcholine (ACh) in the brain.  相似文献   

4.
In this paper, a phytoplankton–zooplankton model with toxic liberation delay is considered. Firstly, the critical values of Hopf bifurcation, transcritical bifurcation and Hopf-transcritical bifurcation are given, and to give more detailed information about the periodic oscillations, the direction and stability of Hopf bifurcation is studied by using the normal-form theory and center manifold theorem. Then, we give the detailed bifurcation set by calculating the universal unfoldings near the Hopf-transcritical bifurcation point. Finally, we show that the plankton system may exhibit quasi-periodic oscillations, which are verified both theoretically and numerically, and explain the experimental observed fluctuation phenomenon of plankton population.  相似文献   

5.
In this paper, we identify the critical point for a Hopf-pitchfork bifurcation in a nonlinear financial system with delay, and derive the normal form up to third order with their unfolding in original system parameters near the bifurcation point by normal form method and center manifold theory. Furthermore, we analyze its local dynamical behaviors, and show the coexistence of a pair of stable periodic solutions. We also show that there coexist a pair of stable small-amplitude periodic solutions and a pair of stable large-amplitude periodic solutions for different initial values. Finally, we give the bifurcation diagram with numerical illustration, showing that the pair of stable small-amplitude periodic solutions can also exist in a large region of unfolding parameters, and the financial system with delay can exhibit chaos via period-doubling bifurcations as the unfolding parameter values are far away from the critical point of the Hopf-pitchfork bifurcation.  相似文献   

6.
A dynamic model for an activated sludge process is proposed to investigate the stability and bifurcation characteristics of this industrially important unit. The model is structured upon two processes: an intermediate participate product formation and active biomass synthesis processes. The growth kinetics expressions are based on substrate inhibition and noncompetitive inhibition of the intermediate product. The bifurcation analysis of the process model shows static as well as periodic behavior over a wide range of model parameters. The model also exhibits other interesting stability characteristics, including bistability and transition from periodic to nonperiodic behavior through period doubling and torus bifurcations. For some range of the reactor residence time the model exhibits chaotic behavior as well. Practical criteria are also derived for the effects of feed conditions and purge fraction on the dynamic characteristics of the bioreactor model.  相似文献   

7.
The degree of mixing in polymerization reactions can be influenced by various factors that can also affect the reactor performance. For this reason, a detailed micromixing model was implemented to study the effects of micromixing on the dynamic behavior of continuous free-radical solution polymerization tank reactors. The reactor model was used to perform the bifurcation analysis of the reacting system, paying special attention to the effect of micromixing parameters on the reactor behavior. The bifurcation study showed that multiple steady-states and periodic oscillations can be observed under partially segregated micromixing conditions. Moreover, the micromixing model was able to describe the dynamic responses presented by perfectly mixed and completely segregated reactors. These results indicate that this class of reactors can exhibit more complex dynamic behavior than shown until now.  相似文献   

8.
研究了小周期扰动对一类存在Hopf分支的非线性系统的影响.特别是应用平均法讨论了扰动频率与Hopf分支固有频率在共振及二阶次调和共振的情形周期解分支的存在性.表明了在某些参数区域内,系统存在调和解分支和次调和解分支,并进一步讨论了二阶次调和分支周期解的稳定性.  相似文献   

9.
A set of two coupled nonlinear diffusion reaction equations is studied and the existence of secondary bifurcation is shown. Using the method of two-timing, it is found that diffusion reaction equations of this type can exhibit an exchange of stability between distinct nontrivial solutions. This exchange can provide either a smooth or discontinuous transition between stable solutions, and the nontrivial solutions can be either steady or temporally periodic. This analysis is applied to the model biochemical reaction of Prigogine and the types of secondary bifurcation which occur in this model are classified.  相似文献   

10.
This paper is concerned with a diffusive Holling–Tanner predator–prey model subject to homogeneous Neumann boundary condition. By choosing the ratio of intrinsic growth rates of predator to prey λ as the bifurcation parameter, we find that spatially homogeneous and non-homogeneous Hopf bifurcation occur at the positive constant steady state as λ varies. The steady state bifurcation of simple and double eigenvalues are intensively investigated. The techniques of space decomposition and the implicit function theorem are adopted to deal with the case of double eigenvalues. Our results show that this model can exhibit spatially non-homogeneous periodic and stationary patterns induced by the parameter λ. Numerical simulations are presented to illustrate our theoretical results.  相似文献   

11.
A new model of coupled oscillators is proposed and investigated. All phase variables and parameters are integer-valued. The model is shown to exhibit two types of motions, those which involve periodic phase differences, and those which involve drift. Traditional dynamical concepts such as stability, bifurcation and chaos are examined for this class of integer-valued systems. Numerical results are presented for systems of two and three oscillators. This work has application in digital technology.  相似文献   

12.
One of the general SIRS disease transmission model is considered under the assumptions that the size of the population varies, the incidence rate is nonlinear, and the recovered (removed) class may also be directly reinfected. A combination of analytical and numerical techniques is used to show that (for some parameters) the bifurcations of equilibria can occur and also asymptotically orbitally stable periodic solutions with asymptotic phase can arise through Hopf bifurcations. The investigation is based on computer simulation of bifurcation manifolds in the parameter space. Hopf bifurcations are investigated on the base of center manifold theory by the computation of bifurcation parameters and the approximation of Hopf-bifurcating cycles by bifurcation formulas. This method finds the limit cycle to a good approximation and also its stability. For computer simulations the necessary computer oriented algorithms were developed and encoded by C++. Some results of computer simulations are presented and numerical evidence of existence of bifurcations of equilibria and Hopf bifurcations for the considered model is provided.  相似文献   

13.
The dynamical behavior of an SIR epidemic model with birth pulse and pulse vaccination is discussed by means of both theoretical and numerical ways. This paper investigates the existence and stability of the infection-free periodic solution and the epidemic periodic solution. By using the impulsive effects, a Poincaré map is obtained. The Poincaré map, center manifold theorem, and bifurcation theorem are used to discuss flip bifurcation and bifurcation of the epidemic periodic solution. Moreover, the numerical results show that the epidemic periodic solution (period-one) bifurcates from the infection-free periodic solution through a supercritical bifurcation, the period-two solution bifurcates from the epidemic periodic solution through flip bifurcation, and the chaotic solution generated via a cascade of period-doubling bifurcations, which are in good agreement with the theoretical analysis.  相似文献   

14.
张子范  张锁春 《数学学报》2003,46(1):167-176
本文分析了三维俄勒冈振子Tyson模型的正定态和Hopf分岔,以及分岔后 周期解的存在性.通过证明三维模型与简化的二维模型之间轨线结构的拓扑等价,说 明了将三维模型简化为二维模型进行研究的有效性.  相似文献   

15.
In this paper, we introduce and study a model of a Monod–Haldene type food chain chemostat with periodically varying substrate. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Furthermore, we numerically simulate a model with sinusoidal input, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the periodic system shows two kinds of bifurcations, whose are period-doubling and period-halfing.  相似文献   

16.
We examine in detail the effect of a periodic perturbation upon a system undergoing a Hopf bifurcation. Particular attention is paid to the case of resonance between the natural Hopf bifurcation frequency and the perturbation frequency. It is shown that for a certain parameter range this Hopf bifurcation is modified by the perturbation to exhibit frequency (phase) pulling and locking, and the nature of this frequency locking is described. In addition, the effect of adding diffusion to the system is discussed, and it is shown that diffusive waves are possible.  相似文献   

17.
This paper deals with the model for matured population growth proposed in Cooke et al. [Interaction of matiration delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39 (1999) 332–352] and the resulting SIS epidemic model. The dynamics of these two models are still largely undetermined, and in this paper, we perform some bifurcation analysis to the models. By applying the global bifurcation theory for functional differential equations, we are able to show that the population model allows multiple periodic solutions. For the SIS model, we obtain some local bifurcation results and derive formulas for determining the bifurcation direction and the stability of the bifurcated periodic solution.  相似文献   

18.
In this paper, we introduce and study a model of a Monod type food chain chemostat with pulsed input and washout. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the impulsive system shows two kinds of bifurcations, whose are period-doubling and period-halving.  相似文献   

19.
This paper presents an analysis of the dynamical behaviour of a non-symmetric oscillator with piecewise-linearity. The Chen–Langford (C–L) method is used to obtain the averaged system of the oscillator. Using this method, the local bifurcation and the stability of the steady-state solutions are studied. A Runge–Kutta method, Poincaré map and the largest Lyapunov’s exponent are used to detect the complex dynamical phenomena of the system. It is found that the system with piecewise-linearity exhibits periodic oscillations, period-doubling, period-3 solution and then chaos. When chaos is found, it is detected by examining the phase plane, bifurcation diagram and the largest Lyapunov’s exponent. The results obtained in this paper show that the vibration system with piecewise-linearity do exhibit quite similar dynamical behaviour to the discrete system given by the logistic map.  相似文献   

20.
Bifurcations and Chaos in Duffing Equation   总被引:2,自引:0,他引:2  
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcingis investigated.The conditions of existence of primary resonance,second-order,third-order subharmonics,m-order subharmonics and chaos are given by using the second-averaging method,the Melnikov method andbifurcation theory.Numerical simulations including bifurcation diagram,bifurcation surfaces and phase portraitsshow the consistence with the theoretical analysis.The numerical results also exhibit new dynamical behaviorsincluding onset of chaos,chaos suddenly disappearing to periodic orbit,cascades of inverse period-doublingbifurcations,period-doubling bifurcation,symmetry period-doubling bifurcations of period-3 orbit,symmetry-breaking of periodic orbits,interleaving occurrence of chaotic behaviors and period-one orbit,a great abundanceof periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaoticattractors.Our results show that many dynamical behaviors are strictly departure from the behaviors of theDuffing equation with odd-nonlinear restoring force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号