首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

2.
Comparative study on the gasification reactivity of the three types of Chinese coal chars with steam and CO2 at 850–1050 °C was conducted by isothermal thermogravimetric analysis. The effects of coal rank, pore structure, ash behavior, and gasification temperature on the gasification reactivity of coal chars were investigated. It is found that the gasification reactivity difference between different coal chars changes with reaction degree and gasification temperature, and has no immediate connection with coal rank and initial pore structure. Ash behavior plays an important role in the char reactivity, and changes with gasification temperature and reaction degree due to the variation in the compositions and relative amount. The influence of pore structure is more noticeable during a relatively moderate reaction process. The relative reactivity ratio of steam to CO2 gasification generally decreases with the increasing temperature, and is related with the catalytic effect of inherent minerals. The characteristic parameters of the chars were analyzed, finding that the value of half reaction specific rate is approximate to the average specific rate under the same conditions. The nth-order distributed activation energy model is proposed to describe the coal char gasification process, and the results show that the activation energy increases with the increasing carbon conversion.  相似文献   

3.
Poly(p-phenylene benzobisoxazole) (PBO) was impregnated with small amounts of H3PO4, and the effects of this additive on the porosity and other characteristics of chars and activated carbon fibers (ACFs) derived from this polymer were investigated. To this end, PBO-AS impregnated with 5, 10 or 15 wt.% H3PO4 was pyrolyzed at 850 °C, and the resulting chars were physically activated with carbon dioxide at 800 °C to different burn-off (BO) degrees. Thermal analysis techniques only detected minor effects of H3PO4 on PBO pyrolysis. The char yield and char reactivity towards CO2 increased following PBO-AS impregnation with H3PO4. Structural (X-ray diffraction), porous textural (CO2 adsorption) and surface chemical (temperature-programmed desorption, X-ray photoelectron spectroscopy) characterizations of the pyrolysis chars indicated that the increase in char reactivity is probably associated with a higher content of oxygenated functionalities. Following CO2 activation, the surface area and pore volume of the obtained ACFs chiefly depended on the BO degree, but impregnation with H3PO4 restricted the pore size to the micropore and narrow mesopore range, thus producing adsorbents with a slightly narrower pore size distribution than in the absence of H3PO4. The results are compared with those previously obtained under equivalent conditions with other high-crystallinity polymers as precursors for ACFs.  相似文献   

4.
The steam gasification of coal chars derived from three different ranks of typical Chinese coals was studied in a pressurized fixed-bed differential reactor at elevated pressure (up to 2.0 MPa). Three mathematical models [volumetric model (VM), grain model (GM), and random pore model (RPM)] for the gasification kinetics of different chars were validated, through which the kinetic parameters were obtained and discussed. The results show that the evolution trend of the coal char gasification rate with carbon conversion differs from coal ranks and has little change with pressure and temperature. The pressurized gasification process of the Shenmu sub-bituminous coal char (SM char) and the Jingcheng anthracite char (JC char) can be well-predicted by the RPM, while that of the Huolinhe lignite char can be better described by the VM. The pressure has little effect on the options of the reaction kinetic models for the three chars. The kinetic parameter E is almost a constant independent of pressure, while k 0 changes with pressure, and it seems that k 0 would be almost a constant over 1.0 MPa for SM and JC chars. The reaction order decreases with increasing the total system pressure and differs from different coal types.  相似文献   

5.
Two series of activated carbons have been prepared from date pits; series C, using carbon dioxide as activating agent, and series S, prepared by activation with steam under the same experimental conditions. The obtained samples were oxidized with nitric acid in order to introduce more oxygen surface groups. The surface area and porosity of the parent and oxidized activated carbons were studied by N2 adsorption at 77 K and CO2 adsorption at 273 K. The oxygen surface complexes were characterized by temperature-programmed decomposition (TPD). The results show that carbon dioxide and steam activations produce microporous carbons with an increasing amount of CO evolving groups when increasing the burn-off. On the other hand, oxidation with nitric acid increases the amount of CO and CO2 evolved by the decomposition of surface oxygen groups, this increase being related to the development of porosity in the carbon with the degree of activation and to the activating agent used (CO2 versus steam).  相似文献   

6.
The potential of vacuum pyrolysis to convert sugar cane bagasse into char materials for wastewater treatment and soil amendment is the focus of this research paper. Vacuum pyrolysis produces both bio-oil and char in similar quantities. Vacuum pyrolysis has the potential to produce high quality chars for wastewater treatment and soil amendment directly during the conversion process, with no further upgrading required. In the present study, chars with the required porous structure was obtained directly from the vacuum pyrolysis process, making it very efficient as adsorbent both in terms of methylene blue (MB) adsorption with a N2-BET surface area of 418 m2 g−1. Further steam activation of the chars benefited the development of meso- and macroporosity, although this upgrading step was not essential to achieve the required performance of char as an MB adsorbent. The development of large pores during the vacuum pyrolysis favored physisorption of MB, rather than chemisorption. The chemical nature of the vacuum pyrolysis char resulted in a slightly acidic surface (pH 6.56). The biochar from vacuum pyrolysis can be considered as a highly beneficial soil amendment, as it would enhance soil nutrient and water holding capacity, due to its high cation exchange capacity (122 cmolc kg−1) and high surface area. It is also a good source of beneficial plant macro- and micronutrients and contains negligible levels of toxic elements.  相似文献   

7.
A novel corn grain precursor was used for the preparation of activated carbon by chemical activation. The detailed investigation of the porosity development in the prepared activated carbon was done by altering the various activation conditions such as the activation temperature, activation time and ratio between the powdered form of carbonized corn grain char and KOH. The surface characteristics including the surface roughness of all the activated carbon samples were evaluated from the analysis of nitrogen (N2) adsorption isotherm data. At the maximum of 2978 m2/g, a super surface area having the corn grain‐based activated carbon (CG‐AC) was synthesized by using the following conditions: 1/4 ratio of powdered form of carbonized corn grain char/KOH; 800 °C; and 4 h. The possibility of preparing highly porous activated carbons with controlled porosity by varying different activation conditions was found from the pore size distribution results. In particular, the domination of the ratio between the powdered form of carbonized corn grain char and KOH on the porosity development was high compared to the activation temperature and activation time. In addition, the surface roughness calculated from the surface fractal dimension indicates the decrease of surface roughness with increasing activation conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
煤焦的孔隙结构是影响气化反应的重要因素之一,本文通过测定部分气化焦样的比表面积及其孔隙结构,详细地研究了烟煤焦的孔隙结构在气化过程中的变化规律及其影响因素,结果表明,煤焦的孔隙结构在气化过程中的变化不但取决于原煤的性质,而且还取决于气化介质与气化温度;在相同条件下气化至相同气化率时总比表面积和孔体积大小顺序为彬县>神木>王封煤焦,总比表面积与微孔比表面积均随温度的升高而降低,在反应的前期CO2与H2O两种气氛下产生的总比表面积与微孔比表面积相当,但在反应后期CO2气氛下能够产生更多的总比表面积与微孔比表面积。  相似文献   

9.
利用固定床反应器、红外光谱仪、吸附仪、X射线衍射仪、电感耦合等离子原子发射光谱仪、偏光显微镜等对比研究了原生生物质(原生物质)及水洗脱钾生物质(脱钾生物质)在N_2及富一氧化碳(CO)气氛下所得半焦的产率、官能团及其他物化结构的变化规律。研究表明,与脱钾生物质相比,热解温度低于750℃时,原生物质的半焦产率降低、比表面积增大、芳环结构减少而烷基、脂肪族结构等增加;与N_2相比,富CO气氛下所得半焦产率降低、比表面积增大,芳香结构、脂肪族结构、烷基减小。而热解温度高于750℃时,生物质中的钾和热解气氛中的CO均使生物质半焦产率增加、官能团数量和比表面积减少。利用偏光显微镜对生物质半焦表面矿物质的研究表明,热解温度低于750℃时,所得半焦表面矿物组分较少且高度分散;热解温度高于750℃时,所得半焦表面矿物组分较多,分布密集且熔融团聚现象随温度升高而增多。而对于半焦石墨化程度的研究表明,半焦石墨化程度随温度升高而增加,但低热解温度所得半焦的石墨化程度较差。温度高于750℃时,CO气氛使石墨化程度增加,而钾使石墨化程度降低。  相似文献   

10.
Activated carbon materials have been prepared by pyrolysis of plasma pretreated recycled PET. The obtained carbon materials have been texturally characterized by N2 (77 K) and CO2 (273 K) adsorption. Atomic force microscopy (AFM) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) have been used to analyze the surface of the treated precursors. Carbon materials obtained by He, N2, and CO2 plasma pretreatments (4 min) of the precursor and subsequent pyrolysis have shown a higher adsorption capacity than the corresponding chars (untreated pyrolised PET). This effect seems to be related to the elimination by the plasma treatments of low-molecular-weight products in the precursor, which are responsible for the formation of amorphous carbon deposits during the carbonization that blocks the porosity. Longer periods of treatment (15 min) do not favor the opening of the microporosity because cross-linking reactions in the precursor producing high molecular weight deposits prevail. The development of porosity is less relevant if oxygen plasma is used, as a considerable amount of oxygen functionalities are also formed. These groups can decompose during pyrolysation producing the above-mentioned amorphous carbon deposits. The textural characteristics of the carbon materials obtained after 4 min of plasma treatment on the precursor are very similar to those obtained after 4 h of CO2 (1073 K) activation of the same char. Therefore, this method can be an alternative to avoid the burnoff and high energy cost of the activation step.  相似文献   

11.
以麦秆和稻壳生物质为研究对象,在不同的热解温度、热解速率以及蒸汽活化温度条件下制备了生物质焦,采用比表面积与孔隙度分析仪测定生物质焦的比表面积和孔隙结构参数。利用固定床吸附装置,研究了热解温度、热解速率、活化温度和模拟烟气中SO2和NO浓度等因素对生物质焦吸附SO2和NO性能的影响。结果表明,蒸汽活化可以显著提高生物质焦的BET比表面积、D-R比表面积、D-R微孔容积和总孔容,降低其平均孔径,并显著增加蒸汽活化生物质焦对SO2与NO吸附的起始穿透时间和吸附量。快速热解下制得的蒸汽活化焦对SO2和NO的吸附效果优于慢速热解,热解温度为873 K的蒸汽活化焦的吸附性能明显好于热解温度为673与1 073 K的蒸汽活化焦。在973~1 173 K下,随着蒸汽活化温度的提高,蒸汽活化生物质焦对SO2和NO的吸附量呈现先上升后下降的趋势。随着模拟烟气中SO2与NO浓度的降低,蒸汽活化生物质焦对SO2与NO吸附的起始穿透时间延长,但相应的SO2和NO吸附量下降。在873 K、快速热解和1 073 K条件下制得的蒸汽活化麦秆焦对SO2和NO吸附量最大,其值分别为109.02和21.77 mg/g。  相似文献   

12.
The char gasification characteristics and the composition of evolved gases in a CO2 environment have been studied using a thermogravimetric analyzer (TG) coupled with a mass spectrometer. Three types of coal char were studied: lignite (TXL), sub-bituminous (PRB), and bituminous (KYB). TG results showed that the reactivities of TXL and PRB were higher than that of KYB, and the reactivity of TXL was higher than that of PRB. The characterization of the chars implied that the mineral content in the char plays an important role in the reactivity and that the surface area and pore volume may accelerate the reactivity of chars. The evolved gases from three chars were mainly CO and SO2. SO2 was slightly delayed by CO during gasification of TXL and PRB chars, but for KYB, SO2 and CO formed in the same temperature range, but at higher temperatures compared with TXL and PRB. The CO production of KYB was the best, 0.98 mg mg?1; and SO2 was the least, 0.031 mg mg?1. PRB and TXL chars had similar CO production, but SO2 in TXL was higher.  相似文献   

13.
The gasification reactivity as well as physical and chemical structure of chars generated from two kinds of agricultural waste (i.e. corn straw and wheat straw) were studied to better understand the role of lower pyrolysis temperatures and lower heating rates on the gasification characteristics of agricultural waste chars. Char samples were generated in a one-stage quartz fixed-bed reactor. The carbon dioxide (CO2) gasification reactivity of chars was measured by thermogravimetric (TGA) analysis. Scanning electron microscopy (SEM) analysis, surface area (BET) analysis, Fourier transform infrared spectroscopy (FTIR) analysis and X-ray diffractometry (XRD) analysis were employed to determine the effect of operating conditions on the char structure. Char gasification reactivities decreased with increasing pyrolysis temperatures. The char particles generated under high pyrolysis temperatures had many smaller pores with thinner cell walls, larger surface areas, and some melting. Results indicated that many functional groups’ bands decreased and even disappeared with an increasing pyrolysis temperature. The chars’ microcrystalline became larger at high pyrolysis temperatures. The reactivity of wheat straw char is higher than corn straw char. The difference in the gasification reactivity of agricultural waste chars generated at different pyrolysis temperatures correlated well with the effect of pyrolysis temperatures on the agricultural waste char structure.  相似文献   

14.
The glass transition behaviour of polystyrene (PS) with systematically varied topologies (linear, star-like and hyperbranched) confined in nanoscalic films was studied by means of spectroscopic vis-ellipsometry. All applied PS samples showed no or only a marginal depression in glass transition temperature Tg in the order hyperbranched PS (5 K) > star-like PS (3 K) > linear PS (0 K) for the thinnest films analyzed. The Tg behaviour was accompanied by the observation of the film density in dependence of film thickness. A maximum decreased density of about 7% for hyperbranched PS and 5% for star-like PS and again no deviation in density of bulk was found for linear PS. Accordingly, we deduce from these results considering an experimental accuracy of about ± 2 K for Tg and up to ±3% for film density, that the polymer topology only barely influences Tg in the confinement of thin films.  相似文献   

15.
In the present work four different biomass samples (pine cone, soybean cake, corn stalk and peanut shell) were pyrolyzed to 550 °C in an inert gas atmosphere and a comparison between the properties of chars produced has been performed. Characterization of biomass samples was carried out with FT-IR, 13C NMR, SEM and EDX. The influence of the parent material on char quality was investigated. The chars were characterized by their proximate and ultimate analysis and surface areas by N2 adsorption at 77 K using BET equation. The morphological changes in carbonaceous solids were observed by scanning electron microscopy (SEM), and FT-IR spectra were obtained to evaluate the functional groups. The results obtained from the different techniques were combined to give an overview of the chemical and physical properties of the biomass char samples.  相似文献   

16.
Coal and char oxycombustion is a complex process because of very high reaction rate of oxygen with coals and chars carbon. Very important process during oxycombustion is diffusion of O2 to surface of coal and char grain. This process can be minimized using small samples and high flow of the gas, but it is also dependent on temperature. For this reason, it is impossible to eliminate diffusion processes which cause significant impact on calculated kinetic parameters. This paper describes the results of thermogravimetric studies of oxycombustion process with evolved gas analysis by FTIR. Ultimate and proximate analysis of coal and char were made. Thermogravimetric experiments of coal and its char oxycombustion were conducted using five heating rates, namely 2.5, 5, 10, 20 and 40 K min?1, and gas mixture composed of 20 % O2 in CO2. Activation energies of coal and char oxycombustion were calculated by isoconversional methods: integral Vyazovkin and differential Friedman. Activation energies for three ranges of heating rates were calculated. This paper shows influence of heating rate on calculated activation energy. The reason of this phenomenon is due to change of the mechanism of coal and char oxycombustion from the chemical kinetic control regime to mixed chemical kinetic–diffusion control regime.  相似文献   

17.
Biomass samples (almond shell, walnut shell, almond tree pruning and olive stone) were subjected to thermoanalytical investigation to evaluate their thermal behaviour and its correlation with their lignocellulosic composition. Then, the pyrolysis process of these materials was studied in terms of the energy content of the phases generated (gas and liquid). Finally, the feasibility of obtaining effective adsorbents from the char generated was studied. With this aim, the char was used to prepare activated carbons (ACs) by steam gasification at fixed activation temperature and time, identical for the four chars. The differences found in the porosity development of the activated carbons were related to the lignocellulosic composition of the raw material. It is shown that the four biomass residues used are versatile precursors that allow the preparation of adsorbent materials with different textural characteristics.  相似文献   

18.
利用高温携带流装置,在再燃条件下获得了不同的稻壳焦。采用元素分析、SEM-EDS分析、N2吸附-脱附、ICP-AES、XRD和FT-IR等手段对稻壳焦的理化结构进行了分析与表征,研究了再燃温度对稻壳再燃过程中灰焦理化结构演化规律的影响。结果表明,在850-1 150℃,反应温度的升高有利于稻壳焦孔隙结构的形成,进而有效提高稻壳焦的比表面积和孔容积。稻壳中碱(土)金属元素的释放顺序为NaCaMgK,且随温度升高,碱(土)金属元素的释放率呈现先略微升高后逐渐趋于稳定的趋势,氯的释放率逐渐增大。稻壳焦中的碱(土)金属主要以硅酸盐和硫酸盐的形式存在。稻壳焦表面含氧官能团随反应温度的升高逐渐减少。  相似文献   

19.
不同彬县焦的水蒸气气化反应动力学研究   总被引:1,自引:0,他引:1  
在常压,900℃~1050℃考察了彬县煤的三种焦样(常规方法制焦、快速热解焦和脱灰快速热解焦)在热天平上的水蒸气气化反应。考察了温度和焦种对水蒸气气化反应的影响。对比了三种焦的动力学参数和比表面积。结果表明,气化温度是影响煤焦气化反应速率的主要因素,提高50℃,反应速率增加一倍。快速热解焦的反应速率在相同反应条件下明显大于慢速焦。三种焦的表观活化能以快速焦最大,因而反应速率受温度的影响也最大,快速脱灰焦次之,慢速焦最小。  相似文献   

20.
Pore development and the formation of oxygen functional groups were studied for activated carbon prepared from bamboo (Bambusa bambos) using a two-step activation with CO2, as functions of carbonization temperature and activation conditions (time and temperature). Results show that activated carbon produced from bamboo contains mostly micropores in the pore size range of 0.65 to 1.4 nm. All porous properties of activated carbons increased with the increase in the activation temperature over the range from 850 to 950 °C, but decreased in the temperature range of 950 to 1000 °C, due principally to the merging of neighboring pores. The increase in the activation time also increased the porous properties linearly from 60 to 90 min, which then dropped from 90 to 120 min. It was found that the carbonization temperature played an important role in determining the number and distribution of active sites for CO2 gasification during the activation process. Empirical equations were proposed to conveniently predict all important porous properties of the prepared activated carbons in terms of carbonization temperature and activation conditions. Oxygen functional groups formed during the carbonization and activation steps of activated carbon synthesis and their contents were dependent on the preparation conditions employed. Using Boehm’s titration technique, only phenolic and carboxylic groups were detected for the acid functional groups in both the chars and activated carbons in varying amounts. Empirical correlations were also developed to estimate the total contents of the acid and basic groups in activated carbons in terms of the carbonization temperature, activation time and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号