首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A differential reflectometer that is capable of measuring small differences in optical reflectivity or transmissivity of two specimens and therefore enhances the structure in the spectral reflectivity of materials was used to study various α-Cu-Zn, α-Cu-Al, and Cu-Ni alloys with the aim of investigating the changes in band structure as a function of composition. In Cu-Zn and Cu-Al alloys three main absorption peaks were identified that were associated with the Δ5 → Δ1, X5 → X4' and L2' → L1sitions. It was found that the Δ5→ Δ1transition increases slightly in energy with increasing Zn or Al concentration. These transitional energies are identical for both alloys in the entire α-phase region. The X5 → X4' and L2' → L1 transitions decrease in energy with increasing solute concentration. The shift in energy is significantly larger for the Cu-Al system. In Cu-Ni alloys no shift of the absorption edge around 2.2 eV was found, which is consistent with the predictions of the virtual-bound-state model.  相似文献   

2.
K-shell ionization cross sections have been determined for Cr, Cu and In at proton bombardment in the energy region from 0.9 to 2.5 MeV. The same cross sections were determined for Cr and Cu at alpha bombardment in the 0.9–4.0 MeV region. The experimental results are compared with five different theoretical calculations.  相似文献   

3.
Luminescence and excitation spectra of doped LiF and NaF crystals are studied by time-resolved optical and luminescent vacuum ultraviolet (VUV) spectroscopy (2–40 eV energy range, T=10–295 K) with the use of synchrotron radiation of the X-ray and the VUV ranges and pulsed electron beams. Spectral kinetic parameters of luminescence and energies of excited states of U6+ ions are determined. The dominant role of the electron-hole mechanism for energy transfer to impurity centers is established. The effect of multiplication of electronic excitations is clearly manifested for E > 25 eV in NaF:U, Cu crystals and determines their high scintillation yield (137% relative to Tl:CsI when detected in the current regime).  相似文献   

4.
K-shell ionization cross sections have been determined for Cr, Cu and In at proton bombardment in the energy region from 0.9 to 2.5 MeV. The same cross sections were determined for Cr and Cu at alpha bombardment in the 0.9–4.0 MeV region. The experimental results are compared with five different theoretical calculations.  相似文献   

5.
We investigated the thermal degradation of LiF:Mg,Cu,P (NTL-250) and LiF:Mg,Cu,Si (MCS) for the development of TL sheet. By thermogravimetry and differential scanning calorimetry (TG-DSC), the exothermic reaction was observed between 320 °C and 400 °C in MCS as well as NTL-250. The heat value of MCS was twice as large as that of NTL-250. This ratio corresponded with that of Mg amount in these TL materials measured by ICP-OES (inductively-coupled plasma optical emission spectrometry). X-ray diffraction (XRD) measurements were also carried out, and the peaks of MgF2 phase were also observed in degraded MCS sample as well as NTL-250. Moreover, X-ray absorption near-edge structures (XANES) of Cu in these LiF TLDs were measured. The valences of Cu did not change before and after degradation. It indicates that the thermal degradation is caused by not Cu but Mg ion state change. The exothermic reaction is possible caused by the stabilization reactions, and then it was expected to correspond with MgF2 precipitation. From these results, we concluded that the thermal degradations of these LiF TLDs are caused by the precipitation of MgF2.  相似文献   

6.
7.
8.
The electronic and optical properties of Cu, CuO and Cu(2)O were studied by x-ray photoelectron spectroscopy (XPS) and reflection electron energy-loss spectroscopy (REELS). We report detailed Cu 2p, Cu LVV, O 1s and O KLL spectra which are in good agreement with previous results. REELS spectra, recorded for primary energies in the range from 150 to 2000 eV, were corrected for multiple inelastically scattered electrons to determine the effective inelastic scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(-1/ε) by using the QUEELS-ε(k,ω)-REELS software package. By Kramers-Kronig transformation of the determined Im(-1/ε), the real and imaginary parts (ε(1) and ε(2)) of the dielectric function, and the refractive index n and extinction coefficient k were determined for Cu, CuO, and Cu(2)O in the 0-100 eV energy range. Observed differences between Cu, CuO and Cu(2)O are mainly due to modifications of the 3d and O 2p electron configurations.  相似文献   

9.
10.
The spectra of Cu XXIX, Zn XXX and Ga XXXI excited in a low-inductance vacuum spark plasma have been obtained for the first time. A mathematical noise-suppression method was used for the spectrum of Ga XXXI.  相似文献   

11.
12.
We have investigated the formation and motion of copper adatoms and addimers on Ag(111) between 6 and 25 K with low-temperature scanning tunneling microscopy. The presence of atoms and dimers alters the motion of atoms and dimers via the long-range interaction mediated by the electrons in the two-dimensional surface state band. Above 16 K, dimers show quantum rotor behavior with altered rotational behavior in the presence of an additional adatom. The most favorable diffusional motion of the dimer is identified in combination with molecular dynamics calculations to be a zigzag out-of-cell motion starting above 24 K.  相似文献   

13.
The results of measurement of electric resistivity and thermal conductivity of materials obtained by spark plasma sintering from powders of Cu, Cr, and their mixtures in the range of 300–600 K are presented. It is shown that the grinding of powders in planetary mills results in a reasonably substantial change in the electric and thermal properties of materials: to increasing electric resistivity and decreasing thermal conductivity and temperature coefficients of electric resistivity. The possible causes of these effects are considered.  相似文献   

14.
Correlations in metal shifts constitute an important feature of these sulfides. We have found these in the course of the crystal structure analysis of an ordered phase of bornite. Digenite undergoes one transition and bornite two transitions. The divers phases are more or less ordered and the phase changes are order disorder transitions. The magnetic properties of bornite depends only on the ordering of iron atom whose magnetic moments are ordered at low temperature.  相似文献   

15.
Results from spectral studies of the optical and luminescent properties of single crystals of lithium fluoride grown using the Czochralski technique and doped with ions of copper and magnesium, are presented. The effect of heat treatment regimes and the dependence of the concentration of magnesium impurities on the sensitivity of crystals of LiF:Mg, Cu to ionizing radiation are discussed.  相似文献   

16.
We report and discuss experimental data on the thermoelectric power of magnetic multilayers. Measurements of the thermoelectric power of Fe/Cr, Co/Cu and Fe/Cu multilayers have been carried out in the temperature range 4K < T < 150 K magnetic fields perpendicular to the layers. All specimens were found to exhibit pronounced magnetothermoelectric power (MTEP) effects correlating with their giant negative magnetoresistance. The main difference between the MTEP and the magnetoresistance is in their temperature dependence. Whereas the magnetoresistance is a decreasing function of temperature, the MTEP, at least in Co/Cu and Fe/Cu multilayers, is very small at low temperature and increases rapidly above 30–40 K. We ascribe this high temperature part of the MTEP to spin-dependent electron-magnon scattering and we propose a theoretical model.  相似文献   

17.
We have performed a study of empty electronic bulk and surface states on the three low indexed copper surfaces employing momentum resolved inverse photoemission. The bulk electronic features may be well understood in the frame work of the bulk direct transition model using state of the art band structure calculations. Surface states of both, the crystal derived and the image potential induced type have been identified and were found to agree with previous work. Several radiative transitions into unoccupied bands were also investigated at elevated temperatures. Characteristic temperatures of an exponential attenuation law are distinctly different between surface and bulk transitions. However, no systematic behaviour of bulk transitions at different points of the Brillouin zone could be established.  相似文献   

18.
19.
《Current Applied Physics》2015,15(11):1417-1420
By using first-principles calculations within the density functional theory and the many-body perturbation theory, we investigate the structural, electronic, and optical properties of bulk Cu2Se with a recently discovered low-temperature layered configuration. We demonstrate that the effects of the van der Waals forces significantly modify the interlayer binding and distance in the layered Cu2Se, while the band gap is invariant. Our density functional theory and post-processing GW calculations reveal that for the layered structure, GW correction remedies the serious band-gap underestimation of the density functional theory from 0.12 eV to 0.99 eV. By solving the Bethe–Salpeter equation, we find that the optical gap of the layered Cu2Se is 0.86 eV, which is in close agreement with previous experimental observations. In addition, we show that the high-temperature fluorite structure has no band gap, even after GW correction, explaining that the band gap controversy among the theories stems from different structural models. This work may serve as an important guide in designing and evaluating photovoltaic devices using Cu2Se-based materials.  相似文献   

20.
Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at ?{sNN }\sqrt {s_{NN} } =19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |η| < 5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of η is better for the same N part/2A value than for the same N part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号