首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper describes a visualization of unidirectional and circular motions triggered by an electrochemical redox reaction at a charged, bent, and streamed liquid electrode/liquid solution interface. The novel circular motion that induces a conversion of electrochemical energy into mechanical energy could be visualized for the first time at a hanging mercury drop electrode (HMDE)/dimethyl sulfoxide (DMSO) solution interface via the electrochromic reaction of 2,1,3-benzothiadiazole (BTD) by using a CCD-color video camera. The observed motions are self-insisting in nature and are tunable into upward, downward, clockwise, and anticlockwise ones by an appropriate choice of the experimental conditions. This circular motion is visualized for the first time as the cause of the well-known cyclic voltammetric anodic current oscillation at the HMDE. Several small perturbations, for example, surface tension, surface motion, bulk motion, diffusional mass transport, and surface electrochemical potential are considered to be endlessly amplified by their coupling in a cyclic chain, resulting in such macroscopic motions at the electrode/solution interface. All of the phenomena can be explained on the basis of the modern theory proposed by Aogaki et al. for the polarographic streaming maxima of the first kind.  相似文献   

2.
Ertas FN  Fogg AG  Moreira JC  Barek J 《Talanta》1993,40(10):1481-1488
The behaviour of the copper complexes of glycyl-L-histidyl-glycine (GHG) was investigated using cyclic voltammetry and differential pulse voltammetry after their adsorptive accumulation on the surface of a hanging mercury drop electrode (HMDE). The nature of the observed cathodic and anodic peaks was established and optimum conditions were found for the differential pulse cathodic stripping voltammetric detemination of GHG at the 1 x 10(-8)M concentration level using adsorptive accumulation at -0.20 V vs. Ag/AgCl reference electrode and the cathodic stripping peak around -0.4 V (pH 8.3). This peak corresponds to the reduction of the Cu(I)-GHG complex formed at the HMDE surface as an intermediate in the reduction of Cu(II)-GHG to Cu(O)amalgam.  相似文献   

3.
The adsorptive behavior of the anti-inflammatory drug meloxicam was studied by cyclic, differentia-pulse and square-wave voltammetry on a hanging mercury drop electrode (HMDE). The drug was accumulated at HMDE and a well-defined stripping peak current was obtained at -1.42 V vs. Ag/AgCl (saturated KCl) electrode in acetate buffer solution (pH 5.0). A voltammetric procedure was developed for the determination of meloxicam using square-wave cathodic adsorptive stripping voltammetry (SW-CASV). The optimum working conditions for the determination of the drug were established. The analysis of meloxicam in human plasma was carried out satisfactorily.  相似文献   

4.
一种新型双核Cu配合物的电化学性质及其应用研究   总被引:1,自引:0,他引:1  
本文研究了一种新型平面双核Cu配合物 (deCu)的电化学性质及其修饰电极在水溶液中对半胱氨酸和L_色氨酸的电催化作用 .悬汞电极循环伏安曲线示出 ,在 - 0 .5V和 - 0 .2 5V处显示的还原峰分别对应于配体和配合物中心金属离子的还原反应 .光谱电化学实验进一步表明 :电位价跃至 - 0 .75V时 ,在 4 40nm处出现Cu(Ⅱ )向低价铜的电子跃迁吸收峰 ,而紫外光谱在 2 70和 2 80nm两处出现的吸收峰红移 ,这可能是因为配合物分子氧桥联发生配位形成大偶合体系所致 .利用循环伏安法制备deCu/GC和deCu/石墨碳修饰电极 ,实验表明 ,该修饰电极修饰膜的氧 /还反应为 2电子 2质子过程 ,并对半胱氨酸和L_色氨酸等具有较好的电催化氧化效果  相似文献   

5.
Radi A  Beltagi AM  Ghoneim MM 《Talanta》2001,54(2):283-289
The adsorption behavior of ketorolac on a hanging mercury drop electrode (HMDE) was explored by square-wave and cyclic voltammetry. The square wave voltammetric response of ketorolac depends on the parameters of the square wave voltammetry excitation signal as well as on the pH of the medium and the accumulation time. The drug was accumulated at HMDE and a well-defined peak was obtained at -1.41 V versus. Ag/AgCl (saturated KCl) in acetate buffer of pH 5.0. A square-wave adsorptive stripping voltammetric method for the quantitative determination of ketorolac was developed. The linear concentration range was 1x10(-10)-1x10(-8) when using 300 s accumulation at -0.8 V. The detection limit of ketorolac was 1.0x10 (-11)M . The precision was excellent with relative standard deviation of 3.85% at concentration of 5x10 (-8)M after 60 s accumulation time. Applicability to serum samples was illustrated. A detection limit of 14 ng per ml of serum was obtained.  相似文献   

6.
To establish an electrochemical HPLC detection system which is suitable for the voltammetric characterisation of unknown contaminants and food components at working potentials lower than –1 V, a modified flow-through cell for the use of a hanging mercury drop electrode (HMDE) is described. The introduction of silanised glass capillaries and a new flow-channel design provide a high HMDE lifetime, which is recommended in HPLC detection. As test system the herbicides diquat, paraquat and difenzoquat and ethylviologen as internal standard were measured using differential pulse voltammetry (DPV) detection to improve selectivity. Spiked water samples were analysed with voltammetric and UV-detection and results agreed well.  相似文献   

7.
The voltammetric behaviour of three 5-nitroimidazoles,metronidazole,tinidazole and ornidazole,was investigated,and a method was developed for the simultaneous determination of these compounds,based on their reduction at a hanging mercury drop electrode(HMDE) in pH 8.95 buffer with differential pulse voltammetric(DPV) approach.Well defined voltammetric waves with peak potentials of -692,-640 and -652 mV were observed for these compounds,respectively.It is difficult to determine them individually from their mixtures without preseparation,for their voltammetric peaks overlapped seriously,so the chemometrics were used to resolve the overlapped voltammogram and quantify the mixtures.The proposed method was successfully applied to the determination of three 5-nitroimidazoles in milk and honey samples.  相似文献   

8.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily  相似文献   

9.
The complex formation between uric acid and zinc, cadmium and lead ions has been investigated using differential pulse polarography in 0.01M NaNO(3). It is found that the complexes formed by Cd(II) and Pb(II) ions with uric acid have the stoichiometry of 1:2 and the logarithmic values of the apparent stability constant are 9.47 and 11.7, respectively. On the other hand, zinc(II) ions do not give any indication of complexation with uric acid. A sensitive voltammetric method is developed for the quantitative determination of uric acid. This method is based on controlled adsorptive preconcentration of uric acid on the hanging mercury drop electrode (HMDE), followed by tracing the voltammogram in the cathodic going potential scan. The modes used are direct current stripping voltammetry (DCSV) and differential pulse stripping voltammetry (DPSV). The detection limits found were 8 x 10(-9)M (quiescent period 15 sec) by DPSV and 1.6 x 10(-8)M by DCSV.  相似文献   

10.
To establish an electrochemical HPLC detection system which is suitable for the voltammetric characterisation of unknown contaminants and food components at working potentials lower than –1 V, a modified flow-through cell for the use of a hanging mercury drop electrode (HMDE) is described. The introduction of silanised glass capillaries and a new flow-channel design provide a high HMDE lifetime, which is recommended in HPLC detection. As test system the herbicides diquat, paraquat and difenzoquat and ethylviologen as internal standard were measured using differential pulse voltammetry (DPV) detection to improve selectivity. Spiked water samples were analysed with voltammetric and UV-detection and results agreed well. Received: 12 November 1998 / Revised: 21 January 1999 / Accepted: 26 January 1999  相似文献   

11.
A square-wave voltammetric (SWV) method using a hanging mercury drop electrode (HMDE) has been developed for determination of the herbicide molinate in a biodegradation process. The method is based on controlled adsorptive accumulation of molinate for 10 s at a potential of –0.8 V versus AgCl/Ag. An anodic peak, due to oxidation of the adsorbed pesticide, was observed in the cyclic voltammogram at ca. –0.320 V versus AgCl/Ag; a very small cathodic peak was also detected. The SWV calibration plot was established to be linear in the range 5.0×10–6 to 9.0×10–6 mol L–1; this corresponded to a detection limit of 3.5×10–8 mol L–1. This electroanalytical method was used to monitor the decrease of molinate concentration in river waters along a biodegradation process using a bacterial mixed culture. The results achieved with this voltammetric method were compared with those obtained by use of a chromatographic method (HPLC–UV) and no significant statistical differences were observed.  相似文献   

12.
《Analytical letters》2012,45(2):233-256
Abstract

2‐Acetylbutyrolactone was characterized as a novel reagent of analytical potential in polarographic and voltammetric analyses. It forms α‐oxo‐γ‐butyrolactone arylhydrazones through Japp‐Klingemann coupling reaction with primary arylamines. α‐Oxo‐γ‐butyrolactone arylhydrazones possess an electro‐active site (azomethine center) that displays a cathodic activity at the mercury electrode. The protonated azomethine center of α‐oxo‐γ‐butyrolactone arylhydrazones is reduced by 2e/2H+ reaction to the hydrazo form. The differential pulse polarographic behavior of α‐oxo‐γ‐butyrolactone arylhydrazones was investigated in aqueous media ranging from pH 2 to 10.5. In aqueous acidic solution, α‐oxo‐γ‐butyrolactone arylhydrazones were shown to adsorb on a hanging mercury drop electrode and to be amenable to determination by adsorptive stripping voltammetry. Procedures for applying the polarographic and voltammetric methods to determination of sulfadiazine and sulfamethoxazole in pharmaceutical preparations have been developed. An analogous study on sulfas‐azo derivatives of ethyl acetoacetate was also considered. Furthermore, the differential pulse voltammetric method was adopted for determination of sulfamethoxazole in spiked plasma and urine samples. The recoveries turned out to be satisfactory, showing relative standard deviations from 2.4 to 4.6%.  相似文献   

13.
Curcumin (CU) shows a wide range of pharmacological properties including antioxidant, anti‐inflammatory, and antitumor effects. In order to understand the chemical basis of different activities of curcumin, we have studied the oxidation and reduction of curcumin. Based on cyclic and differential pulse voltammetric methods, using carbon paste and hanging mercury drop electrodes, in the present study we tested different parameters to optimize the conditions for the determination of curcumin and its electrochemical characteristics. Better results were obtained via differential pulse voltammetry using carbon paste electrode. Curcumin yields well‐defined differential pulse voltammetric responses with well‐defined oxidation (in the potential region of 0.3–0.6 V, vs. Ag/AgCl) and reduction (at 0.3 V) peaks using carbon paste electrode.  相似文献   

14.
Niazi A  Ghasemi J  Zendehdel M 《Talanta》2007,74(2):247-254
An adsorptive differential pulse stripping method for the simultaneous determination of morphine and noscapine is proposed. The procedure involves an adsorptive accumulation of morphine and noscapine on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed morphine and noscapine by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: pH 10.0, accumulation potential of −100 mV versus Ag/AgCl, accumulation time of 150 s, scan rate of 40 mV s−1 and pulse height of 100 mV. Morphine and noscapine peak currents were observed in same potential region at about +0.25 V. The simultaneous determination of morphine and noscapine by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of mixture of morphine and noscapine by the application of least-squares support vector machines (LS-SVM) was performed. The linear dynamic ranges were 0.01-3.10 and 0.015-2.75 μg mL−1 and detection limits were 3 and 7 ng mL−1 for morphine and noscapine, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of morphine and noscapine in addict's human plasma with satisfactory results.  相似文献   

15.
The adsorptive collection of the molybdenum (VI) complexed with 2-(2-benzothiazolylazo)-p-cresol (BTAC) coupled with the catalytic current of the adsorbed complex at a static mercury drop electrode yields an ultrasensitive voltammetric procedure for the determination of molybdenum. Optimal experimental conditions were: a stirred acetate buffer 0.2 M (pH 3.5) as supporting electrolyte, a BTAC concentration of 1.0 x 10(-6) M as ligand, and a concentration of 0.1 M potassium nitrate as the oxidizing agent. In addition, a preconcentration potential of -0.080 V vs Ag/AgCl (3 M KCl), equilibration time of 15 s, a frequency of 30 Hz, a scan increment of 2 mV, a pulse amplitude of 0.050 mV, and a drop area of 0.032 cm2 were used. The cyclic voltammogram was recorded using a staircase wave with a scan rate of 100 mV/s. The forward scan starts at the initial potential of -0.080 V and is reversed at -0.90 V. Using the catalytic current at approximately -0.55 V the response to the Mo(VI) was found to be linear over a concentration range of 1.0-10.0 microg/L. The limit of detection is as low as 6.2 x 10(-10) M with 4 min of preconcentration time. The possible interference of other trace ions was investigated. The merits of this procedure are demonstrated using of reference samples.  相似文献   

16.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily Received: 10 July 1997 / Revised: 1 April 1998 / Accepted: 6 April 1998  相似文献   

17.
Silver solid amalgam electrode (AgSAE) was used for differential pulse voltammetric (DPV) measurements of cysteine and cysteine-containing peptides, glutathione, gamma-Glu-Cys-Gly and phytochelatin (gamma-Glu-Cys)(3)-Gly (PC3), in the presence of Co(II) ions. It had been established earlier that cysteine-containing peptides and proteins catalyze hydrogen evolution at mercury electrodes in presence of cobalt salts; these processes are known as the Brdicka reaction. DPV signals measured with the AgSAE, the surfaces of which had been modified by mercury meniscus or mercury film, were qualitatively the same as those obtained with the hanging mercury drop electrode (HMDE). With these electrodes the number and the intensity of Brdicka signals of cysteine, glutathione and PC3 differed, making a distinction among them possible. On the other hand, with the polished silver solid amalgam electrode (the surface of which was completely free of liquid mercury) all three compounds produced only one but strikingly intense peak in the region of Brdicka reaction. Using this signal, cysteine, glutathione as well as PC3 could be determined at 10(-8)M level, representing sensitivity up to 2 orders of magnitude better than attained with the mercury-modified AgSAEs or HMDE.  相似文献   

18.
El-Maali NA  Ghandour MA  Khodari M 《Talanta》1993,40(12):1833-1838
The electrochemical behavior of the relatively new antibacterial antibiotic Pipril (Piperacillin) at the dropping mercury electrode is investigated using both direct current polarography (DCP) and differential pulse polarography (DPP). At the hanging mercury electrode (HMDE), the reduction mechanism has been elucidated using cyclic voltammetric technique in the pH range from 2 to 10. The effect of some metal ions, e.g. Cu(II) and Pb(II) has been also tested. Determination of the drug using adsorptive stripping analysis was assessed in both aqueous and urine samples. The effect of the different experimental parameters affecting the drug determination, e.g. pH, supporting electrolyte nature, accumulation potential, accumulation time and other operational parameters are also mentioned. Detection limits of 5 × 10−9 and 1 × 10−8M Pipril in aqueous and urine samples, respectively, are achieved.  相似文献   

19.
The cyclic voltammetric behaviour of Eu3+/Eu2+ couple at hanging mercury drop electrode (HMDE) has been studied in chloride, bromide, iodide, thiocyanate and EDTA supporting electrolytes. The apparent rate constant and transfer coefficient for these systems have been calculated at various voltage scan rates, without using the data for standard or formal potential. The values have been compared with those obtained by earlier workers through other electrochemical methods.  相似文献   

20.
Convolutive forecasting is a procedure which converts a non-steady-state voltammogram into a steady-state voltammogram. The procedure was found to be successful on a range of sphericities generated by varying the size of a hanging mercury drop and the potential sweep rate in a series of cyclic voltammetric experiments. Both theoretical and experimental analyses on a reversible electrochemical system were considered. An expression establishing the relationship between the radius of a spherical electrode and the potential sweep rate was developed to define the limits of the convolutive forecasting algorithm which was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号