首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Received June 24, 1996 / Revised version received May 22, 1997 Published online February 25, 1999  相似文献   

2.
For the general quadratic programming problem (including an equivalent form of the linear complementarity problem) a new solution method of branch and bound type is proposed. The branching procedure uses a well-known simplicial subdivision and the bound estimation is performed by solving certain linear programs.  相似文献   

3.
This paper presents two linear cutting plane algorithms that refine existing methods for solving disjoint bilinear programs. The main idea is to avoid constructing (expensive) disjunctive facial cuts and to accelerate convergence through a tighter bounding scheme. These linear programming based cutting plane methods search the extreme points and cut off each one found until an exhaustive process concludes that the global minimizer is in hand. In this paper, a lower bounding step is proposed that serves to effectively fathom the remaining feasible region as not containing a global solution, thereby accelerating convergence. This is accomplished by minimizing the convex envelope of the bilinear objective over the feasible region remaining after introduction of cuts. Computational experiments demonstrate that augmenting existing methods by this simple linear programming step is surprisingly effective at identifying global solutions early by recognizing that the remaining region cannot contain an optimal solution. Numerical results for test problems from both the literature and an application area are reported.  相似文献   

4.
This work shows how disjunctive cuts can be generated for a bilevel linear programming problem (BLP) with continuous variables. First, a brief summary on disjunctive programming and bilevel programming is presented. Then duality theory is used to reformulate BLP as a disjunctive program and, from there, disjunctive programming results are applied to derive valid cuts. These cuts tighten the domain of the linear relaxation of BLP. An example is given to illustrate this idea, and a discussion follows on how these cuts may be incorporated in an algorithm for solving BLP.  相似文献   

5.
《Optimization》2012,61(3):371-384
In this article, we propose two successive search methods for solving a canonical DC programming problem constrained by the difference set between two compact convex sets in the case where the dimension number is greater than or equal to three. In order to find feasible solutions, the algorithms generate the directions based on a branch and bound procedure, successively. By exploring the provisional solutions throughout the intersection of the boundaries of two compact convex sets, both algorithms calculate an approximate solution.  相似文献   

6.
7.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

8.
A bilinear programming problem with uncoupled variables is considered. First, a special technique for generating test bilinear problems is considered. Approximate algorithms for local and global search are proposed. Asymptotic convergence of these algorithms is analyzed, and stopping rules are proposed. In conclusion, numerical results for randomly generated bilinear problems are presented and analyzed.  相似文献   

9.
In this note we show that various branch and bound methods for solving continuous global optimization problems can be readily adapted to the discrete case. As an illustration, we present an algorithm for minimizing a concave function over the integers contained in a compact polyhedron. Computational experience with this algorithm is reported.  相似文献   

10.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

11.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

12.
A new zero-one integer programming model for the job shop scheduling problem with minimum makespan criterion is presented. The algorithm consists of two parts: (a) a branch and bound parametric linear programming code for solving the job shop problem with fixed completion time; (b) a problem expanding algorithm for finding the optimal completion time. Computational experience for problems having up to thirty-six operations is presented. The largest problem solved was limited by memory space, not computation time. Efforts are under way to improve the efficiency of the algorithm and to reduce its memory requirements.This report was prepared as part of the activities of the Management Sciences Research Group, Carnegie-Mellon University, under Contract No. N00014-82-K-0329 NR 047-048 with the U.S. Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.  相似文献   

13.
Finitely convergent algorithms for solving rank two and three bilinear programming problems are proposed. A rank k bilinear programming problem is a nonconvex quadratic programming problem with the following structure: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWFTbGaa8% xAaiaa-5gacaWFPbGaa8xBaiaa-LgacaWF6bGaa8xzaiaa-bcacaWF% 7bacbiGaa43yamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+Hhaca% GFRaGaa4hzamaaDaaaleaacaGFWaaabaGaa4hDaaaakiaa+LhacaGF% RaWaaabuaeaacaGFJbWaa0baaSqaaiaa+PgaaeaacaGF0baaaOGaam% iEaiabl+y6NjaadsgadaqhaaWcbaGaamOAaaqaaiaadshaaaGccaWG% 5bGaaiiFaaWcbaGaa8NAaiaa-1dacaWFXaaabeqdcqGHris5aOGaa4% hEaiabgIGiolaa+HfacaGFSaGaa4xEaiabgIGiolaa+LfacaWF9bGa% a8hlaaaa!5D2E!\[minimize \{ c_0^t x + d_0^t y + \sum\limits_{j = 1} {c_j^t xd_j^t y|} x \in X,y \in Y\} ,\]where X Rn1 and Y R n2 are non-empty and bounded polytopes. We show that a variant of parametric simplex algorithm can solve large scale rank two bilinear programming problems efficiently. Also, we show that a cutting-cake algorithm, a more elaborate variant of parametric simplex algorithm can solve medium scale rank three problems.This research was supported in part by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grant No. 63490010.  相似文献   

14.
We are dealing with a numerical method for solving the problem of minimizing a difference of two convex functions (a d.c. function) over a closed convex set in n . This algorithm combines a new prismatic branch and bound technique with polyhedral outer approximation in such a way that only linear programming problems have to be solved.Parts of this research were accomplished while the third author was visiting the University of Trier, Germany, as a fellow of the Alexander von Humboldt foundation.  相似文献   

15.
We consider the problem of minimizing a general quadratic function over a polytope in the n-dimensional space with integrality restrictions on all of the variables. (This class of problems contains, e.g., the quadratic 0-1 program as a special case.) A finite branch and bound algorithm is established, in which the branching procedure is the so-called integral rectangular partition, and the bound estimation is performed by solving a concave programming problem with a special structure. Three methods for solving this special concave program are proposed.  相似文献   

16.
A branch and bound algorithm is proposed for finding an approximate global optimum of quadratic functions over a bounded polyhedral set. The algorithm uses Lagrangian duality to obtain lower bounds. Preliminary computational results are reported.  相似文献   

17.
In this paper, we will develop an algorithm for solving a quadratic fractional programming problem which was recently introduced by Lo and MacKinlay to construct a maximal predictability portfolio, a new approach in portfolio analysis. The objective function of this problem is defined by the ratio of two convex quadratic functions, which is a typical global optimization problem with multiple local optima. We will show that a well-designed branch-and-bound algorithm using (i) Dinkelbach's parametric strategy, (ii) linear overestimating function and (iii) -subdivision strategy can solve problems of practical size in an efficient way. This algorithm is particularly efficient for Lo-MacKinlay's problem where the associated nonconvex quadratic programming problem has low rank nonconcave property.  相似文献   

18.
The problem Q of optimizing a linear function over the efficient set of a multiple objective linear program serves several useful purposes in multiple criteria decision making. However, Q is in itself a difficult global optimization problem, whose local optima, frequently large in number, need not be globally optimal. Indeed, this is due to the fact that the feasible region of Q is, in general, a nonconvex set. In this paper we present a monotonically increasing algorithm that finds an exact, globally-optimal solution for Q. Our approach does not require any hypothesis on the boundedness of neither the efficient set EP nor the optimal objective value. The proposed algorithm relies on a simplified disjoint bilinear program that can be solved through the use of well-known specifically designed methods within nonconvex optimization. The algorithm has been implemented in C and preliminary numerical results are reported.  相似文献   

19.
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489.  相似文献   

20.
本文对一类新的分式规划问题(FP)提出了一个有效的全局优化方法.首先将问题(FP)转化为其等价问题(EFP),然后利用线性化技术建立了(EFP)的松弛线性规划问题(RLP),通过对其可行域的细分和求解一系列的线性规划,得到问题(EFP)的全局最优值的上下界.理论证明和数值试验的结果都表明该算法能有效求解问题(FP),推广了线性比式和的情形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号