首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

2.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

3.
The structure of the complex [Ni(hmt)(NCS)2(H2O)2]n, assembled by hexamethylenetetramine (hmt) and octahedral Ni(II), is reported. Crystal data: Fw 351.07, a=9.885(10) Å, b=12.06(1) Å, c=12.505(8) Å, β=114.41(4)°, V=1357(1) Å3, Z=4, space group=C2/c, T=173 K, λ(MoK)=0.71070 Å, ρcalc=1.718 gcm−1, μ=17.44 cm−1, R=0.099, Rw=0.145. The tetrahedral assembling template effect of the hmt molecule is completed by two coordination bonds and two hydrogen interactions. The UV–vis absorption spectrum of this complex [Ni(hmt)(NCS)2(H2O)2]n with a two-dimensional network is determined in the range of 5000–35000 cm−1 at room temperature. The observed spectrum is discussed and explained perfectly by the scaling radial theory proposed by us. The two-dimensional structure has no apparent effects on the d–d transitions of the central Ni(II) ion. The IR spectrum and the GT curve of the complex were also measured and clearly reflect its structural properties.  相似文献   

4.
The crystal structure of N-(2-hydroxy-5-chlorophenyl) salicylaldimine (C13H10NO2Cl) was determined by X-ray analysis. It crystallizes orthorhombic space group P212121 with a=12.967(2) Å, b=14.438(3) Å, c=6.231(3) Å, V=1166.5(6) Å3, Z=4, Dc=1.41 g cm−3 and μ(MoK)=0.315 mm−1. The title compound is thermochromic and the molecule is nearly planar. Both tautomeric forms (keto and enol forms in 68(3) and 32(3)%, respectively) are present in the solid state. The molecules contain strong intramolecular hydrogen bonds, N1–H1O1/O2 (2.515(1) and 2.581(2) Å) for the keto form and O1–H01N1 for the enol one. There is also strong intermolecular O2–HO1 hydrogen bonding (2.599(2) Å) between neighbouring molecules. Minimum energy conformations AM1 were calculated as a function of the three torsion angles, θ1(N1–C7–C6–C5), θ2(C8–N1–C7–C6) and θ3(C9–C8–N1–C7), varied every 10°. Although the molecule is nearly planar, the AM1 optimized geometry of the title compound is not planar. The non-planar conformation of the title compound corresponding to the optimized X-ray structure is the most stable conformation in all calculations.  相似文献   

5.
A series of eight materials of stoichiometry [Pt(L-L)2X2][Pt(L-L)2]Y4 (X is Cl, Br; L-L is 1,2-diaminoethane (en) or 1,2-diaminocyclohexane (chxn); Y is ClO4, X) were synthesized. Crystal structures were determined for the compounds [Pt(chxn)2Cl2][Pt(chxn)2](ClO4)4 1, [Pt(chxn)2Br2][Pt(chxn)2](ClO4)42, and [Pt(chxn)2Br2][Pt(chxn)2]Br4 4. All three of these compounds crystallize in the orthorhombic space group I222. Compound 1 has a = 5.711(1) Å, b = 7.804(1) Å, c = 24.101(7) Å, Z = 1, dx = 2.033 g cm−3. Compound 2 has a = 5.781(1) Å, b = 7.720(1) Å, c = 24.036(5) Å, Z = 1, dx = 2.174 g cm−3. Compound 4 has a = 5.379(1) Å, b = 7.028(1) Å, c = 23.884(4) Å, Z = 1, dx = 2.440 g cm−3. These solids contain pseudo one-dimensional chains with a charge-density-wave (CDW) ground state structure: X-Pt(IV)-X···Pt(II)···X. Single crystal resonance Raman experiments were performed on all compounds to measure the symmetric X---Pt---X stretching frequency v1 and the band edge. It is shown that the optical and electronic properties and, therefore, the CDW strength of these one-dimensional materials may be systematically varied over a wide range by employing different combinations of L-L and Y; templates composed of hydrogen bonded networks of L-L and Y were found to control the metal-metal separation, thereby controlling the X---Pt(IV)---X…Pt(II)…X chain geometry. Relationships between the CDW strength, measured as the ratio of the short M(IV)---X distance to the long M(II)---X distance, the band gap energy v1 and the Pt---Pt separation are developed. The reaction coordinate is found to be dominated by changes in the M---M and Pt(II)---X separations over most of the range studied, with contributions from changes in the PtIV---X bonds becoming important only at the smallest M---M separations. Direct evidence demonstrating that MX systems are true Peierls distorted systems is also presented. These results are consistent with modeling based on Peierls-Hubbard hamiltonians. This work explains the unusual pressure and temperature dependences that have been observed for the structures and optical properties of this class of materials and also provides a wealth of information to benchmark many-body theoretical calculations modeling electron-electron and electron-phonon interactions in one-dimensional materials.  相似文献   

6.
The effects of cyclopentadienyl ring size on the geometry of bimetallic organosamarium complexes have been studied by comparing the X-ray crystal structure of [(C5H4Me)2(THF)Sm(μ-Cl)]2, prepared from KC5H4Me and SmCl3 in THF, with C5Me5 analogs. The complex crystallizes from THF at −30°C in space group Pbcn with a = 20.312(5), b = 9.626(2), c = 16.225(3) Å, V = 3172.5(12) Å3 and Dcalc = 1.74 g cm−3 for Z = 4. Least-squares refinement of the model based on 1759 reflections [|Fo| > 2.0σ(|Fo|)] converged to a final RF = 5.0%. The complex adopts a geometry which has a molecular two-fold rotation axis perpendicular to the Sm2Cl2 plane and a crystallographic inversion center. Hence, both methyl groups of each (C5H4Me)2Sm unit are located on the side opposite of the THF ligands, which are trans to each other, and the four C5H4Me ring centroids define a square plane. The Sm---Cl distances are 2.759(3) and 2.819(3) Å.  相似文献   

7.
N-(2-hydroxyphenyl)-4-amino-3-penten-2-on (C11H13NO2) has been studied by X-ray analysis. It crystallizes the orthorhombic space group P212121 with a=8.834(1), b=10.508(2), c=11.212(2) Å, V=1040.8(3) Å3, Z=4, Dc=1.22 g cm−3 and μ(MoK)=0.084 mm−1. The structure was solved by direct methods and refined to R=0.038 for 1373 reflections (I>2σ(I)). The title compound is photochromic and the molecule is not planar. Intramolecular hydrogen bonds occur between the pairs of atoms N(1) and O(1) [2.631(2) Å], and N(1) and O(2) [2.641(2) Å], the H atom essentially being bonded to the N atom. There is also a strong intermolecular O–HO hydrogen bonding [2.647(2) Å] between neighbouring molecules. Tautomeric properties and conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations and the results are compared with the X-ray results.  相似文献   

8.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

9.
X-Ray crystallographic studies on [NEt4]2[Cr2[(O2CC2H5)4(NCS)2] show that the Cr–Cr separation (2.467Å) in the dinuclear anion is one of the longest known. The thiocyanato groups are N-bonded, and the results emphasize the known sensitivity of the quadruple Cr–Cr bond to the nature of the axial ligands. The compound crystallises in the tetragonal space group P4/mnc with two molecules per unit cell, the dimensions of which are a = b = 9.785(1), c = 21.186(2) Å. Magnetic investigations from room to liquid nitrogen temperature on the tetra-μ-propionato complex and on [NMe4]2 [Cr2(O2CCH3)4(NCS)2] show that both complexes have been obtained free from paramagnetic chromium(III) impurities. Their weak paramagnetic susceptibilities (Xcr is approx. 200 x 10−6 cm3 mol−1 at 295 K and 50 x 10−6cm3mol−1 at 90 K) are inherent, and are ascribed to temperature independent paramagnetism at low temperature plus para-magnetism arising from slight population of the triplet state (2J 700 cm−1, g = 2, N = 50 x 10−6cm3mol−1) at higher temperatures.  相似文献   

10.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

11.
One novel chiral copper(II) complex was successfully synthesized from the reaction of chiral 1,3-thiazolidine-2-thione ligand with CuCl2 in dichloromethane in the presence of Et3N and DMAP at room temperature. Its unique crystal structure was unambiguously disclosed by X-ray analysis. The crystal is tetragonal, space group I4(1), space group a=15.0875(11), b=15.0875(11), c=19.362(3) Å, =90, β=90, γ=90°, V=4407.4(8) Å3, Z=8, ρcalc=1.639 mg cm−3.  相似文献   

12.
The pentaamminecobalt(III) complex with the 3-cyano-2,4-pentanedionate anion coordinated through the nitrile nitrogen has been characterized by X-ray crystallography. The crystals of [(NH3)5CoNCacac](Cl)(ClO4)·2H2O are triclinic, space group P , a = 10.245(2) Å, b = 14.071(4) Å, c = 6.971(2) Å, = 90.03(3)°, β = 109.86(2)°, γ = 108.91(2)°, V= 887.1 Å3, Z = 2, Dc = 1.64 g cm−3, F(000) = 456, Mo-K radiation, λ = 0.71069 Å, μ(Mo-K) = 12.7 cm−1. The structure was determined by the heavy-atom method, and refined by block-diagonal least-squares calculations, R = 0.0537, Rw = 0.0607, for 2499 observed reflections. Principal dimensions are: Co---N(NH3) trans to NCacac 1.940(5), other Co---N(NH3) 1.967(2), Co---N(NCacac) 1.911(5) Å. The pendant acac moiety is best described in terms of a delocalized bond network with, for example, C---C distances in the range 1.44–1.52(1) Å. Several reactions involving this free acac group are also described including the preparation and characterization of the dimeric species pentaamminecobalt(III) - μ - (3 - cyano - 2,4 - pentanedionato) - bis(propylenediamine) cobalt(III) perchlorate.  相似文献   

13.
(N,N-Dimethyldithiocarbamato)(n-butyl)diphenyltin(IV), n-BuPh2SnS2NMe2, crystallizes in the monoclinic space group P21/n with a 9.772(5), b 9.895(4), c 21.418(9) Å, β 95.81(3)0, V 2060 Å3 Z = 4, μ 14.4 cm−1 The structure was determined by the heavy-atom technique from 3103 independent reflections measured at room temperature on an Enraf-Nonius four-circle CAD-4 diffractometer using monochromatized Mo-K radiation and refined to a final R value of 5.8%. The tin atom is essentially four-coordinated with a weak fifth tin-sulphur bond (Sn---S(2) 3.079(1) Å) considerably longer than the other (Sn---S(1) 2.466(1) Å). A comparison with the complex n-BuPhSn(C1)S2CNEt2 (Sn---S(1) 2.454(1) Å; Sn---S(2) 2.764(1) Å) suggests that enhanced steric factors are responsible for the preferential monodentate behaviour of the dithiocarbamate ligand in the title complex.  相似文献   

14.
The interaction between Mo2(O2CCH3)4, Me3SiI and I2 in THF resulted in oxygen abstraction from the solvent and formation of [Mo2(μ-O)(μ-I)(μ-O2CCH3) I2(THF)4]+[MoOI4(THF)] and I---(CH2)4---I. The molybdenum complex has been characterized by X-ray diffractometry. Crystal data: triclinic, space group P , a = 13.827(3) Å; b = 15.803(7) Å; c = 9.950(3) Å; = 93.34(4)°; β = 102.40(2)°; γ = 90.09(2)°; V = 2120(2) Å3; Z = 2; dcalc = 2.559 g cm−3; R = 0.0476 (Rw = 0.0613) for 370 parameters and 3938 data with F02> 3σ(F02). The metal-metal distance in the cation is 2.527(2) Å and indicates a strong interaction. The magnetic behavior is consistent with the assignment of one unpaired electron to the Mo27+ core of the cation and one to the d1 Mo(V) center of the anion. The interaction between Mo(CO)6 and I2 in THF also results in the formation of 1,4-diiodobutane.  相似文献   

15.
The crystal structures of pharmaceutical product mesalazine (marketed also under different proprietary names as Salofalk, Asacol, Asacolitin, and Claversal) and its hydrochloride are reported. In the crystal mesalazine is in zwitterion form as 5-ammoniosalicylate (1) whereas mesalazine hydrochloride crystallizes in an ionized form as 5-ammoniosalicylium chloride (2). Compound 1 (C7H7O3N) crystallizes in the monoclinic space group P21/n with a = 3.769(1) Å, b = 7.353(2) Å, c = 23.475(5) Å, β = 94.38(2)°, V = 648.7(8) Å3, Z = 4, Dc = 1.568 g cm−3 and μ(MoK) = 1.2 cm−1. Compound 2 (C7H8O3NCl) crystallizes in the triclinic space group P with a = 4.4839(2) Å, b = 5.7936(2) Å, c = 15.6819(5) Å, = 81.329(3)°, β = 88.026(3)°, γ = 79.317(4)°, V = 395.74(3) Å3, Z = 2, Dc = 1.591 g cm−3 and μ(CuK) = 40.8 cm−1. The crystal structures were solved by direct methods and refined to R = 0.041 for 1 and 0.028 for 2, using 607 and 1374 observed reflections, respectively. The configuration of both molecules, with the ortho hydroxyl to a carboxyl group, favours the intramolecular hydrogen bonds. Very complex systems of intermolecular hydrogen bonds were observed in both crystal packings. They are discussed in terms of graph-set notation. The mesalazine crystal structure is characterized by two-dimensional network of hydrogen bonds in the ab plane. The crystal structure pattern of mesalazine hydrochloride is a three-dimensional network significantly supported by N+---HCl interactions.  相似文献   

16.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

17.
The convergence of ab initio calculations of the beryllium dimer potential is examined with several basis sets orders of perturbation theory. When the atomic pair natural orbital basis set calculations are extrapolated to the complete basis set and full CI limits, the calculated parameters: Re=2.447 Å, De=827 cm−1, ν01=212.7 cm−1, ν12=167.2 cm−1, ν23=121.5 cm−1 and ν34=77.7 cm−1 are in good agreement with the experimental parameters: Re=2.45 Å, De=839±10 cm−1, ν01=223.2 cm−1, ν12=169.7 cm−1, ν23=122.5 cm−1, and ν34=79 cm−1.  相似文献   

18.
Reaction of the optically active primary amine (S)-(—)--methylbenzylamine with trimethylaluminium in heptane affords the crystalline organoaluminium dimer (S)-(—)-(S)-(—)-[(C6H5)CH(CH3)NHA1(CH3)2]2. Isolated as large, colourless, extremely air-sensitive prismatic crystals, the title compound crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.406(3), b = 15.505(4), c = 17.547(5) Å, V = 2287 Å3 and p = 1.03 g cm−3 for Z = 4. Least-squares refinement based on 1477 observed reflections converged at R = 0.056, Rw = 0.058. Methane was eliminated during the course of the reaction due to cleavage of A1---C and N---H bonds resulting in an asymmetric A12N2 fragment at the core of the organoaluminium dimer. The mean A1---C bond distance in the dimethylaluminium units is 1.930(8), while the mean A1---N bond distance is 1.950(5) Å. Specific rotation ([]D25 in CH2C12)of the dimer is determined to be - 20.6°.  相似文献   

19.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

20.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号