首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨洪礼 《经济数学》2005,22(1):94-99
本文给出半无限规划的一个对偶罚函数模型,该模型能处理目标函数不是凸函数的情形,从而凸(SIP)对偶为该模型的一个特例.并且,作为罚函数,本模型的罚因子比l1-罚函数要小,这使得算法更可行,最后,给出零对偶间隙证明.  相似文献   

2.
For the linear bilevel programming problem, we propose an assumption weaker than existing assumptions, while achieving similar results via a penalty function approach. The results include: equivalence between (i) existence of a solution to the problem, (ii) existence of an exact penalty function approach for solving the problem, and (iii) achievement of the optimal value of the equivalent form of the problem at some vertex of a certain polyhedral convex set. We prove that the assumption is both necessary and sufficient for the linear bilevel programming problem to admit an exact penalty function formulation, provided that the equivalent form of the problem has a feasible solution. A method is given for computing the minimal penalty function parameter value. This method can be executed by solving a set of linear programming problems. Lagrangian duality is also presented.  相似文献   

3.
Numerical analysis of a class of nonlinear duality problems is presented. One side of the duality is to minimize a sum of Euclidean norms subject to linear equality constraints (the constrained MSN problem). The other side is to maximize a linear objective function subject to homogeneous linear equality constraints and quadratic inequalities. Large sparse problems of this form result from the discretization of infinite dimensional duality problems in plastic collapse analysis.The solution method is based on the l 1 penalty function approach to the constrained MSN problem. This can be formulated as an unconstrained MSN problem for which the first author has recently published an efficient Newton barrier method, and for which new methods are still being developed.Numerical results are presented for plastic collapse problems with up to 180000 variables, 90000 terms in the sum of norms and 90000 linear constraints. The obtained accuracy is of order 10-8 measured in feasibility and duality gap.  相似文献   

4.
We use the penalty function method to study duality in generalized convex (invex) programming. In particular, we will obtain a new derivation under which the generalized convex (invex) programs do not have duality gaps.  相似文献   

5.
Penalty function techniques are well known perturbation methods for solving mathematical programming problems. We define new classes of penalty functions by introducing simple perturbations of classical penalty functions or, equivalently, perturbations of the given problem. Motivation is a recently developed method called Projective SUMT, proposed by McCormick, based on solving the differential equation associated with a barrier function minimizing trajectory. We show that this trajectory-following algorithm is a simple variation of classical SUMT (Sequential Unconstrained Minimization Technique). This leads to numerous additional interpretations, simplified convergence results, duality relationships and extensions. Like SUMT, Projective SUMT is closely related to the approach of Karmarkar.Research supported by Grant ECS-86195859 and NSF N00014-85-K-0052, Office of Naval Research.  相似文献   

6.
The recently proposed quasi-Newton method for constrained optimization has very attractive local convergence properties. To force global convergnce of the method, a descent method which uses Zangwill's penalty function and an exact line search has been proposed by Han. In this paper a new method which adopts a differentiable penalty function and an approximate line is presented. The proposed penalty function has the form of the augmented Lagrangian function. An algorithm for updating parameters which appear in the penalty function is described. Global convergence of the given method is proved.  相似文献   

7.
刘德峰 《数学季刊》2001,16(3):34-41
在本文中,我们研究斯坦伯格问题,发展了罚函数法。  相似文献   

8.
The Augmented Lagrangian Method of Hestenes and Powell is presented here in a more general case, including Fenchel's duality, using some recent results of R. T. Rockafellar which are here extended. It is shown that for some functionals which contain a non-differentiable term which is the support function of a convex set, the Augmented Lagrangian Method provides a natural way to marry standard duality techniques and regularisation techniques. An application to visco-plastic flows is presented and numerical results are given. A convergence proof is given for the algorithm used. Another application to elasto-plastic torsion is also signaled.  相似文献   

9.
In this note we give a new, simple proof of the standard first and second order necessary conditions, under the Mangasarian–Fromovitz constraint qualification (MFCQ), for non-linear programming problems. We work under a mild constraint qualification, which is implied by MFCQ. This makes it possible to reduce the proof to the relatively easy case of inequality constraints only under MFCQ. This reduction makes use of relaxation of inequality constraints and it makes use of a penalty function. The new proof is based on the duality theorem for linear programming; the proofs in the literature are based on results of mathematical analysis. This paper completes the work in a recent note of Birbil et al. where a linear programming proof of the first order necessary conditions has been given, using relaxation of equality constraints.  相似文献   

10.
We raise some questions about duality theories in global optimization. The main one concerns the possibility to extend the use of conjugacies to general dualities for studying dual optimization problems. In fact, we examine whether dualities are the most general concepts to get duality results. We also consider the passage from a Lagrangian approach to a perturbational approach and the reverse passage in the framework of general dualities. Since a notion of subdifferential can be defined for any duality, it is natural to examine whether the familiar interpretation of multipliers as generalized derivatives of the performance function associated with a dualizing parameterization of the given problem is still valid in the general framework of dualities.  相似文献   

11.
We give an approach for finding a global minimization with equality and inequality Constraints.Our approach is to construct an exact penalty function, and prove that the global minimal points of this exact penalty function are the primal constrained global minimal points. Thus we convert the problem of global constrained optimization into a problem of global unconstrained optimization. Furthermore, the integral approach for finding a global minimization for a class of discontinuous functions is used and an implementable algorithm is given.  相似文献   

12.
In this paper the pseudo-Lipschitz property of the constraint set mapping and the Lipschitz property of the optimal value function of parametric nonconvex semi-infinite optimization problems are obtained under suitable conditions on the limiting subdifferential and the limiting normal cone. Then we derive sufficient conditions for the strong duality of nonconvex semi-infinite optimality problems and a criterion for exact penalty representations via an augmented Lagrangian approach. Examples are given to illustrate the obtained results.  相似文献   

13.
Khanh  Phan Quoc  Nuong  Tran Hue  Théra  Michel 《Positivity》1999,3(1):49-64
This paper shows how the use of penalty functions in terms of projections on the constraint cones, which are orthogonal in the sense of Birkhoff, permits to establish augmented Lagrangians and to define a dual problem of a given nonconvex vector optimization problem. Then the weak duality always holds. Using the quadratic growth condition together with the inf-stability or a kind of Rockafellar's stability called stability of degree two, we derive strong duality results between the properly efficient solutions of the two problems. A strict converse duality result is proved under an additional convexity assumption, which is shown to be essential.  相似文献   

14.
We propose an entire space polynomial-time algorithm for linear programming. First, we give a class of penalty functions on entire space for linear programming by which the dual of a linear program of standard form can be converted into an unconstrained optimization problem. The relevant properties on the unconstrained optimization problem such as the duality, the boundedness of the solution and the path-following lemma, etc, are proved. Second, a self-concordant function on entire space which can be used as penalty for linear programming is constructed. For this specific function, more results are obtained. In particular, we show that, by taking a parameter large enough, the optimal solution for the unconstrained optimization problem is located in the increasing interval of the self-concordant function, which ensures the feasibility of solutions. Then by means of the self-concordant penalty function on entire space, a path-following algorithm on entire space for linear programming is presented. The number of Newton steps of the algorithm is no more than $O(nL\log (nL/ {\varepsilon }))$ , and moreover, in short step, it is no more than $O(\sqrt{n}\log (nL/{\varepsilon }))$ .  相似文献   

15.
This paper is devoted to developing augmented Lagrangian duality theory in vector optimization. By using the concepts of the supremum and infimum of a set and conjugate duality of a set-valued map on the basic of weak efficiency, we establish the interchange rules for a set-valued map, and propose an augmented Lagrangian function for a vector optimization problem with set-valued data. Under this augmented Lagrangian, weak and strong duality results are given. Then we derive sufficient conditions for penalty representations of the primal problem. The obtained results extend the corresponding theorems existing in scalar optimization.  相似文献   

16.
Generalized Benders decomposition   总被引:26,自引:0,他引:26  
J. F. Benders devised a clever approach for exploiting the structure of mathematical programming problems withcomplicating variables (variables which, when temporarily fixed, render the remaining optimization problem considerably more tractable). For the class of problems specifically considered by Benders, fixing the values of the complicating variables reduces the given problem to an ordinary linear program, parameterized, of course, by the value of the complicating variables vector. The algorithm he proposed for finding the optimal value of this vector employs a cutting-plane approach for building up adequate representations of (i) the extremal value of the linear program as a function of the parameterizing vector and (ii) the set of values of the parameterizing vector for which the linear program is feasible. Linear programming duality theory was employed to derive the natural families ofcuts characterizing these representations, and the parameterized linear program itself is used to generate what are usuallydeepest cuts for building up the representations.In this paper, Benders' approach is generalized to a broader class of programs in which the parametrized subproblem need no longer be a linear program. Nonlinear convex duality theory is employed to derive the natural families of cuts corresponding to those in Benders' case. The conditions under which such a generalization is possible and appropriate are examined in detail. An illustrative specialization is made to the variable factor programming problem introduced by R. Wilson, where it offers an especially attractive approach. Preliminary computational experience is given.Communicated by A. V. BalakrishnanAn earlier version was presented at the Nonlinear Programming Symposium at the University of Wisconsin sponsored by the Mathematics Research Center, US Army, May 4–6, 1970. This research was supported by the National Science Foundation under Grant No. GP-8740.  相似文献   

17.
In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorithms proposed in this paper have some advantages. We do not use any convexity and differentiability conditions, and show that the dual problem is always concave regardless of properties the primal problem satisfies. The subgradient of the dual function along which its value increases is calculated without solving any additional problem. In contrast with the penalty or multiplier methods, for improving the value of the dual function, one need not to take the penalty like parameter to infinity in the new methods. In both methods the value of the dual function strongly increases at each iteration. In the contrast, by using the primal-dual gap, the proposed algorithms possess a natural stopping criteria. The convergence theorem for the subgradient method is also presented.  相似文献   

18.
带等式约束的光滑优化问题的一类新的精确罚函数   总被引:1,自引:0,他引:1  
罚函数方法是将约束优化问题转化为无约束优化问题的主要方法之一. 不包含目标函数和约束函数梯度信息的罚函数, 称为简单罚函数. 对传统精确罚函数而言, 如果它是简单的就一定是非光滑的; 如果它是光滑的, 就一定不是简单的. 针对等式约束优化问题, 提出一类新的简单罚函数, 该罚函数通过增加一个新的变量来控制罚项. 证明了此罚函数的光滑性和精确性, 并给出了一种解决等式约束优化问题的罚函数算法. 数值结果表明, 该算法对于求解等式约束优化问题是可行的.  相似文献   

19.
We investigate the augmented Lagrangian dual (ALD) for mixed integer linear programming (MIP) problems. ALD modifies the classical Lagrangian dual by appending a nonlinear penalty function on the violation of the dualized constraints in order to reduce the duality gap. We first provide a primal characterization for ALD for MIPs and prove that ALD is able to asymptotically achieve zero duality gap when the weight on the penalty function is allowed to go to infinity. This provides an alternative characterization and proof of a recent result in Boland and Eberhard (Math Program 150(2):491–509, 2015, Proposition 3). We further show that, under some mild conditions, ALD using any norm as the augmenting function is able to close the duality gap of an MIP with a finite penalty coefficient. This generalizes the result in Boland and Eberhard (2015, Corollary 1) from pure integer programming problems with bounded feasible region to general MIPs. We also present an example where ALD with a quadratic augmenting function is not able to close the duality gap for any finite penalty coefficient.  相似文献   

20.
The penalty function method, presented many years ago, is an important numerical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty function approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号