首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SNMS (sputtered neutrals mass spectrometry) and SIMS (secondary ion mass spectrometry) are used for the depth profile analysis of thin film solar cells based on amorphous silicon. In order to enhance depth resolution, model systems are analyzed only representing parts of the layered system. Results concerning the TCO (transparent conducting oxide)/p interface and the n/i interface are presented. To minimize matrix effects, SNMS is used when the sample consists of layers with different matrices. Examples are the TCO/p interface (where the transition lengths of the depth profiles are found to be sharper when ZnO is used as TCO compared to SnO2) and SnO2/ZnO interfaces in coated TCO layers (where a Sn contamination inside the ZnO layer is found depending on the plasma pressure during the ZnO deposition). SIMS is used when the limits of detection reached by SNMS are not sufficient. Examples are H depth profiles in ZnO layers or P depth profiles near the n/i-interface.  相似文献   

2.
Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.  相似文献   

3.
Metal hydrides are one of the most promising technologies in the field of hydrogen storage due to their high volumetric storage density. Important reaction steps take place at the very surface of the solid during hydrogen absorption. Since these reaction steps are drastically influenced by the properties and potential contamination of the solid, it is very important to understand the characteristics of the surface, and a variety of analytical methods are required to achieve this. In this work, a TiMn2-type metal hydride alloy is investigated by means of high-pressure activation measurements, X-ray photoelectron spectroscopy (XPS), secondary neutral mass spectrometry (SNMS) and thermal desorption mass spectrometry (TDMS). In particular, TDMS is an analytical tool that, in contrast to SIMS or SNMS, allows the hydrogen content in a metal to be quantified. Furthermore, it allows the activation energy for desorption to be determined from TDMS profiles; the method used to achieve this is presented here in detail. In the results section, it is shown that the oxide layer formed during manufacture and long-term storage prevents any hydrogen from being absorbed, and so an activation process is required. XPS measurements show the oxide states of the main alloy elements, and a layer 18 nm thick is determined via SNMS. Furthermore, defined oxide layers are produced and characterized in UHV using XPS. The influence of these thin oxide layers on the hydrogen sorption process is examined using TDMS. Finally, the activation energy of desorption is determined for the investigated alloy using the method presented here, and values of 46 kJ/mol for hydrogen sorbed in UHV and 103 kJ/mol for hydrogen originating from the manufacturing process are obtained.  相似文献   

4.
Zn(O,S) is a promising candidate to replace the commonly used CdS buffer layer for Cu(In,Ga)Se2 (CIGS) thin‐film solar cells due to its non‐toxicity and its potential to enhance the conversion efficiency of the CIGS solar cell. The composition of chemical bath deposited (CBD) and sputtered Zn(O,S) layers with thicknesses well below 100 nm was determined by sputtered neutral and secondary ion mass spectrometry (SNMS and SIMS). Despite numerous mass interferences of double‐charged atoms and dimers with single Zn, O and S isotopes, we developed an evaluation algorithm for quantification of SNMS depth profiles of Zn(O,S) layers. In particular, the superposition of double‐charged S and Zn atoms with O and S isotopes is accounted for numerically in the quantification procedure. For sputtered Zn(O,S) layers, the S/(S + O) atomic ratio and the vertical composition profile can be controlled by the O2 content in the gas flow and the substrate temperature during sputtering whereas for CBD Zn(O,S) the S/(S + O) ratio is constant around 0.7–0.8. A Cu‐depleted layer of about 5 nm on the CIGS surface after buffer deposition was observed for both preparation methods. With negative SIMS, we found more hydroxides and carbon residues in CBD Zn(O,S) as compared to sputtered layers. Best cell performance with sputtered Zn(O,S) layers was achieved for S/(S + O) ratios of 0.25–0.40, yielding efficiencies up to 13%. Our solar cells with CBD Zn(O,S) buffers exhibit higher efficiencies due to an improved open‐circuit voltage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We attempted to make an accurate depth profiling in secondary ion mass spectrometry (SIMS) including backside SIMS for ultra‐thin nanometer order layer. The depth profiles for HfO2 layers that were 3 and 5 nm thick in a‐Si/HfO2/Si were measured using quadrupole and magnetic sector type SIMS instruments. The depth profiling for an ultra‐thin layer with a high depth resolution strongly depends on how the crater‐edge and knock‐on effects can be properly reduced. Therefore, it is important to control the analyzing conditions, such as the primary ion energy, the beam focusing size, the incidence angle, the rastered area, and detected area to reduce these effects. The crater‐edge effect was significantly reduced by fabricating the sample into a mesa‐shaped structure using a photolithography technique. The knock‐on effect will be serious when the depth of the layer of interest from the surface is located within the depth of the ion mixing region due to the penetration of the primary ions. Finally, we were able to separately assign the origin of the distortion to the crater‐edge effect and knock‐on effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
CIGS solar cells (CIGS: CuInSe2, doped with gallium) on flexible glass fibre substrates were investigated to determine a possible migration of compounds from the substrate through the back contact layer into the absorber layer. We employed laser ablation ICP-MS to perform depth profile analysis as this technique combines ease of sample preparation with high sensitivity and moderate depth resolution. Careful optimization of the fluence and repetition rate of the laser system was necessary to ensure sufficient depth resolution in order to be able to relate the transient signals to the different layers. The results show that apart from sodium and small amounts of titanium no elements have migrated into the absorber layer. This was confirmed by micro-PIXE measurements on cross sections of the cell.  相似文献   

7.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

8.
Summary A key problem in sputter depth profile analysis is the conversion of bombardment time of primary ion dose into eroded depth. In particular during sputter removal of multilayer structures, both the total sputtering yieldY tot and the particle density of the sample and, hence, the sputter erosion rate will in general vary between the different individual layers.The important role of this effect is demonstrated for Secondary Neutral Mass Spectrometry (SNMS) depth profile analysis of a model Ta-Si multilayer system where the observed ratio between individual Si- and Ta-layer removal times indicates an average film composition which is far off the TaSi2-stoichiometry claimed by the manufacturer. The determination of absoluteY tot as a function of sputter time from the recorded SNMS depth profile itself enables a non-linear calibration of the depth scale which yields a ratio ofd Si/d Ta = 2 between the individual Si and Ta layer thicknesses and, hence, confirms the true film stoichiometry.
Kalibrierung der Tiefenskala beim Sputterabtrag von Vielschichtsystemen durch SNMS
  相似文献   

9.
Thin layers of ZnS-CuInS(2) mixed crystals (called ZCIS) are promising absorber materials for thin film solar cell applications. The ZCIS-films investigated in this study were grown on (001)GaP, SiO(2) and CeO(2)/Al(2)O(3) with different elemental compositions by Pulsed Laser Deposition (PLD). In order to optimize the sample preparation process a quantitative three-dimensional (i.e. laterally and depth resolved) determination of the compositions and thicknesses of the ZCIS-films is needed. It is demonstrated how this difficult analytical task can be addressed with ion microbeam analysis. For this purpose the films have been analysed non-destructively by means of Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) using a 2 MeV He(+) ion microbeam at the high-energy ion nanoprobe LIPSION. A large variation in film thickness caused by particulates deposited on the film was observed. The elemental compositions of the film and the particulates have been determined and compared with the target composition. The deviations found varied substantially for the individual elements. It could be concluded from these measurements, that the quality of the sintered PLD-target is of crucial importance for the roughness of the films. Furthermore concentration-depth-profiles of the individual elements have been derived non-destructively by means of RBS.  相似文献   

10.
We have investigated the merits of fullerene cluster ions as projectiles in time‐of‐flight secondary neutral mass spectrometry (ToF‐SNMS) sputter depth profiling of an Ni:Cr multilayer sample similar to the corresponding NIST depth profiling standard. It is shown that sputter erosion under bombardment with C60+ ions of kinetic energies between 10 and 20 keV provides good depth resolution corresponding to interface widths of several nanometres. This depth resolution is maintained during the complete removal of the multilayer stack with a total thickness of 500 nm. This finding is in contrast to the case where atomic Ga+ projectile ions of comparable kinetic energy are used, demonstrating the unique features of cluster projectiles in sputter depth profiling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The development of thin‐film solar cells on flexible, lightweight, space‐qualified substrates provides an attractive cost solution for fabricating solar arrays with high specific power (W kg?1). The use of a polycrystalline chalcopyrite absorber layer for thin‐film solar cells is considered as the next generation in photovoltaic devices. At NASA GRC we have focused on the development of new single‐source precursors (SSPs) and their utility to deposit the chalcopyrite semiconducting layer (CIS) onto flexible substrates for solar‐cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering are described. Thin‐film fabrication studies demonstrate that the SSPs can be used in a spray chemical vapor deposition process for depositing CIS at reduced temperatures, and result in electrical properties that are suitable for photovoltaic devices. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The scaling up of established deposition techniques like pulsed laser deposition (PLD) to larger substrate diameter is a main condition for the technological application of high-Tc superconducting (HTSC) thin films. SNMS depth profiling and RBS have been used to control the homogeneity of film thickness and stoichiometry of Au/YBaCuO/CeO2 thin film systems deposited on 3-inch sapphire wafers by PLD. A systematic dependence has been found for the relative SNMS sensitivity factors (RSF) on the structural state of YBaCuO. Therefore, a calculation of the composition of the epitaxial YBaCuO thin films is not possible using RSF determined from polycrystalline YBaCuO target material. The interdiffusion of thin films and substrate has been investigated in dependence on the deposition temperature by SNMS depth profiling. The obtained homogeneity of film thickness and stoichiometry over the entire 3-inch diameter proofs the suitability of PLD for in-situ deposition of 3-inch wafers by YBaCuO thin film systems for microwave applications.  相似文献   

13.
This paper reports a simple hot-injection method to prepare monodisperse indium nanoparticles which are applied as indium sources to prepare CuInS2 thin films and solar cells. Indium nanoparticles with particle sizes of about 10 nm or even smaller are synthesized and are influenced by the stabilizing agent, reaction temperature and solvent, which can be elucidated by a burst nucleation and growth mechanism. Moreover, the inks from the indium nanoparticles are used to prepare compact and well crystallized CuInS2 (CIS) films which are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and I–V measurement. Finally, the CIS solar cells are fabricated on the basis of the CIS films, and their efficiency is about 2.08%, which can be further improved by decreasing series resistance.  相似文献   

14.
Depth profiling analysis of sodium (Na)‐implanted polyethylene terephthalate was performed by using time‐of‐flight secondary ion mass spectrometry in the cesium‐attachment regime. A radical redistribution of the main element due to diffusion and escape of some elements, such as oxygen and hydrogen, and carbonization of a top 550 nm layer were observed. The depth distribution of the implanted sodium was found to be radically different from the “theoretical” distribution calculated by using the Monte Carlo simulation method (TRIM code). We conclude that it is possible to perform an effective depth profiling analysis of an implanted polymer in the “standard” secondary ion mass spectrometry regime without using a big cluster primary ion beam.  相似文献   

15.
For the quantification of heterostructure depth profiles the knowledge of relative sensitivity factors (RSF) and the influence of matrix effects on the measured profiles is necessary. Matrix dependencies of the measured ion intensities have been investigated for sputtered neutral mass spectrometry (SNMS) and MCs+-SIMS. The use of Cs as primary ions for SNMS is advantageous compared to Ar because the depth resolution is improved without changing RSFs determined under Ar bombardment. No significant amount of molecules has been found in the SNMS spectra under Cs bombardment. Using MCs+-SIMS the RSFs are matrix dependent. An improvement of depth resolution can be achieved by biasing the sample against the primary ion beam for SNMS due to a reduction of the net energy of the primary ions and a resulting more gracing impact angle.  相似文献   

16.
Sb-doped SnO2 thin films, deposited by atomic layer epitaxy (ALE) for gas sensor applications, have been characterized by secondary ion mass spectrometry (SIMS). Quantification of the depth profile data has been carried out by preparing a series of ion implanted standards. Average concentrations determined by SIMS have been compared with Sb/Sn ratios obtained by X-ray fluorescence (XRF) spectrometry and proton induced X-ray emission (PIXE) spectrometry and have been found to be in good agreement. However, a detection limit of 5×1018 at cm-3 could only be obtained because of mass interferences. SIMS data show that the ALE technique can be used to produce a controllable growth and doping of thin films.  相似文献   

17.
For the quantification of heterostructure depth profiles the knowledge of relative sensitivity factors (RSF) and the influence of matrix effects on the measured profiles is necessary. Matrix dependencies of the measured ion intensities have been investigated for sputtered neutral mass spectrometry (SNMS) and MCs(+)-SIMS. The use of Cs as primary ions for SNMS is advantageous compared to Ar because the depth resolution is improved without changing RSFs determined under Ar bombardment. No significant amount of molecules has been found in the SNMS spectra under Cs bombardment. Using MCs(+)-SIMS the RSFs are matrix dependent. An improvement of depth resolution can be achieved by biasing the sample against the primary ion beam for SNMS due to a reduction of the net energy of the primary ions and a resulting more gracing impact angle.  相似文献   

18.
Whole blood from patients undergoing Coronary Artery Bypass Grafting (CABG) operations was separated into leukocyte subfractions of polymorphonuclearcytes (PMN) and peripheral blood mononuclear cells (PBMC). Blood samples were collected and analyzed at various timepoints to determine the elemental composition to provide a better understanding of recovery mechanisms and to indicate complications that may occur post-operatively. Proton induced X-ray emission (PIXE) analysis and Rutherford backscattering spectrometry (RBS) using the University of Surrey microprobe was employed to determine the concentrations of a range of elements. Accurate two-dimensional PIXE analysis however, requires knowledge of the sample matrix composition. These samples, on the other hand, showed varying thickness, lacked matrix homogeneity and displayed non-uniform trace element distribution. This paper discusses the results and problems associated with routine PIXE analysis and demonstrates the potential ability of ion beam analysis (IBA) depth profiling software, previously unused in PIXE analysis, to model a RBS spectrum of inhomogeneous, multi-layered samples prior to performing PIXE analysis.  相似文献   

19.
Summary Secondary Neutral Mass Spectrometry (SNMS) and X-Ray Diffraction (XRD) were used to find optimum parameters for the in-situ pulsed laser deposition of ZrO2/Y2O3 (YSZ) buffer layers on silicon (100) substrates. Homogeneous and nearly stoichiometric concentration depth profiles were found by SNMS for the laser deposited YSZ films. A peak of the SiO intensity during profiling of the YSZ/Si interface points to a SiO2 intermediate layer. An increasing Y-deficit of the YSZ films was found by decreasing the laser energy density at the target. Epitaxial growth of the YSZ thin films was observed at an oxygen partial pressure lower than 10–3 mbar, a substrate temperature of 600–800°C and a laser energy density at the target of about 8 J/cm2.  相似文献   

20.
A simple model which describes the essential features commonly observed in a molecular sputter depth profile is presented. General predictions of the dependence of measured molecular ion signals on the primary ion fluence are derived for the specific case where a mass spectrometric technique such as SIMS or secondary neutral mass spectrometry (SNMS) is used to analyze the momentary surface. The results are compared with recent experimental data on molecular depth profiles obtained by cluster‐ion‐initiated SIMS of organic overlayers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号