首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hu C  Noll BC  Schulz CE  Scheidt WR 《Inorganic chemistry》2010,49(23):10984-10991
Pyrazole, a neutral nitrogen ligand and an isomer of imidazole, has been used as a fifth ligand to prepare two new species, [Fe(TPP)(Hdmpz)] and [Fe(Tp-OCH(3)PP)(Hdmpz)] (Hdmpz = 3,5-dimethylpyrazole), the first structurally characterized examples of five-coordinate iron(II) porphyrinates with a nonimidazole neutral ligand. Both complexes are characterized by X-ray crystallography, and structures show common features for five-coordinate iron(II) species, such as an expanded porphyrinato core, large equatorial Fe-N(p) bond distances, and a significant out-of-plane displacement of the iron(II) atom. The Fe-N(pyrazole) and Fe-N(p) bond distances are similar to those in imidazole-ligated species. These suggest that the coordination abilities to iron(II) for imidazole and pyrazole are very similar even though pyrazole is less basic than imidazole. Mo?ssbauer studies reveal that [Fe(TPP)(Hdmpz)] has the same behavior as those of imidazole-ligated species, such as negative quadrupole splitting values and relative large asymmetry parameters. Both the structures and the Mo?ssbauer spectra suggest pyrazole-ligated five-coordinate iron(II) porphyrinates have the same electronic configuration as imidazole-ligated species.  相似文献   

2.
The characterization of a new five-coordinate derivative of (2-methylimidazole)(tetraphenylporphinato)iron(II) provides new and unique information about the effects of forming a hydrogen bond to the coordinated imidazole on the geometric and electronic structure of iron in these species. The complex studied has two crystallographically distinct iron sites; one site has an axial imidazole ligand modified by an external hydrogen bond, and the other site has an axial imidazole ligand with no external interactions. The iron atoms at the two sites have distinct geometric features, as revealed in their molecular structures, and distinct electronic structures, as shown by M?ssbauer spectroscopy, although both are high spin (S = 2). The molecule with the external hydrogen bond has longer equatorial Fe-N(p) bonds, a larger displacement of the iron atom out of the porphyrin plane, and a shorter axial bond compared to its counterpart with no hydrogen bonding. The M?ssbauer features are distinct for the two sites, with differing quadrupole splitting and isomer shift values and probably differing signs for the quadrupole splitting as shown by variable-temperature measurements in applied magnetic field. These features are consistent with a significant change in the nature of the doubly populated d orbital and are all in the direction of the dichotomy displayed by related imidazole and imidazolate species where deprotonation leads to major differences. The results points out the possible effects of strong hydrogen bonding in heme proteins.  相似文献   

3.
The syntheses and structures of three four-coordinate iron(II) porphyrinates are reported. The three derivatives are tetraarylporphyrin species, where the aryl is either phenyl, p-methylphenyl, or p-methoxyphenyl. One of these derivatives, that of tetraphenylporphyrin, Fe(TPP), is a new crystalline phase that is distinct from the earlier reported phase (Collman, J. P.; et al. J. Am. Chem. Soc. 1975, 97, 2676). This new phase of Fe(TPP) has a very saddled porphyrin core; the prior phase was ruffled. The iron atom has close interactions (approximately 3.10 A) with two pyrrole Cb-Cb bonds above and below the porphyrin plane. M?ssbauer spectra and magnetic susceptibility measurements, different for the two phases, provide strong evidence that the two phases of Fe(TPP) have distinct electronic structures that originate from intermolecular interactions.  相似文献   

4.
The synthesis and characterization of six new high-spin deoxymyoglobin models (imidazole(tetraarylporphyrinato)iron(II)) are described. These have been intensively studied by temperature-dependent Mossbauer spectroscopy from 295 to 4.2 K. All complexes show a strong temperature dependence for the quadrupole splitting consistent with low-lying excited states of the same or lower multiplicity. An analysis of the data obtained in applied magnetic fields leads to the assignment of the sign of the quadrupole splitting. All model compounds as well as those of deoxymyoglobin and deoxyhemoglobin, previously studied, have a negative sign for the quadrupole splitting. Although not previously predicted, this experimental observation leads to the assignment of the ground-state electronic configuration for all high-spin imidazole-ligated iron(II) porphyrinates as (d(xz)())(2)(d(yz)())(1)(d(xy)())(1)(d(z)()()2)(1)(d(x)()()2(-)(y)()()2)(1). This is a distinctly different ground-state electronic configuration from other high-spin iron(II) porphyrinates; differences in structural details for the two classes of high-spin complexes are also discussed. The apparent anomaly of differing signs for the zero-field splitting constant between previously studied model complexes and the heme proteins is addressed; the difference appears to result from the fact that the assumptions used in the spin Hamiltonian approach that has been applied to these complexes are not adequately satisfied. Structures of four of the new five-coordinate species have been determined. Core conformations in these derivatives show variation, but these and previously studied compounds reveal a limited number of conformational patterns. The bond lengths and other geometrical parameters such as porphyrin core size and iron out-of-plane displacement support a high-spin state assignment for the iron(II).  相似文献   

5.
Hu C  An J  Noll BC  Schulz CE  Scheidt WR 《Inorganic chemistry》2006,45(10):4177-4185
The preparation and characterization of two new five-coordinate, imidazole-ligated, high-spin iron(II) octaethylporphyrinates is described. [Fe(OEP)(1,2-Me2Im)] and [Fe(OEP)(2-MeHIm)] have been characterized by X-ray structure determinations and temperature-dependent M?ssbauer spectroscopy in zero and applied magnetic fields. The distinction between imidazole-ligated and other ligands in high-spin iron(II) porphyrinates, noted for a series of tetraarylporphyrinate derivatives (Hu, C.; Roth, A.; Ellison, M. K.; An, J.; Ellis, C. M.; Schiltz, C. E.; Scheidt, W. R. J. Am. Chem. Soc. 2005, 127, 5675), is seen here as well. The sign of the quadrupole-splitting constant is again negative, which is unique to the imidazole-ligated derivatives and suggests a distinct electronic structure. The derivatives again display a remarkable temperature dependence in the quadrupole splitting, which is also seen for deoxymyoglobin and -hemoglobin. Structural features for the two new derivatives are similar to those seen earlier, although the core conformations show somewhat more doming character.  相似文献   

6.
The influence of a hydrogen bond to the coordinated imidazole on the geometric and electronic structure of iron has been further studied in new complexes of five-coordinate high-spin imidazole-ligated iron(II) porphyrinates. With 1,10-phenanthroline (1,10-phen) as the hydrogen-bond acceptor, several new octaethylporphyrin dianion (OEP) and meso-tetraphenylporphyrin dianion (TPP) derivatives have been synthesized and characterized by X-ray crystallography and M?ssbauer spectroscopy. In all three new structures, the porphyrin molecules and 1,10-phenanthroline molecules have been found with a ratio of 1:1. All the porphyrin derivatives are five-coordinate 2-methylimidazole-ligated iron(II) species. 1,10-Phenanthroline is hydrogen bonded to the coordinated imidazole to form two unequal hydrogen bonds. The Fe-N p and Fe-N Im bond lengths and displacement of the iron atom out of the porphyrin plane are similar to those in imidazole-ligated species. M?ssbauer measurements showed remarkable temperature dependence; the analysis of the data obtained in applied magnetic field for [Fe(OEP)(2-MeHIm)].(1,10-phen) gave a negative quadrupole splitting value and large asymmetry parameters. All the structural and M?ssbauer properties suggest that these new hydrogen-bonded species have the same electronic configuration as imidazole-ligated species.  相似文献   

7.
Nuclear resonance vibrational spectra have been obtained for six five-coordinate imidazole-ligated iron(II) porphyrinates, [Fe(Por)(L)] (Por = tetraphenylporphyrinate, octaethylporphyrinate, tetratolylporphyrinate, or protoporphyrinate IX and L = 2-methylimidazole or 1,2-dimethylimidazole). Measurements have been made on both powder and oriented crystal samples. The spectra are dominated by strong signals around 200-300 cm(-1). Although the in-plane and out-of-plane vibrations are seriously overlapped, oriented crystal spectra allow their deconvolution. Thus, oriented crystal experimental data, along with density functional theory (DFT) calculations, enable the assignment of key vibrations in the spectra. Molecular dynamics are also discussed. The nature of the Fe-N(Im) vibrations has been elaborated further than was possible from resonance Raman studies. Our study suggests that the Fe motions are coupled with the porphyrin core and peripheral groups motions. Both peripheral groups and their conformations have significant influence on the vibrational spectra (position and shape).  相似文献   

8.
We report structural and spectroscopic data for a series of six-coordinate (nitrosyl)iron(II) porphyrinates. The structures of three tetraphenylporphyrin complexes [Fe(TPP)(NO)(L)], where L = 4-(dimethylamino)pyridine, 1-methylimidazole, 4-methylpiperidine, are reported here to a high degree of precision and allow observation of several previously unobserved structural features. The tight range of bonding parameters for the [FeNO] moiety for these three complexes suggests a canonical representation for six-coordinate systems (Fe-N(p) = 2.007 A, Fe-N(NO) = 1.753 A, angle FeNO = 138.5 degrees ). Comparison of these data with those obtained previously for five-coordinate systems allows the precise determination of the structural effects of binding a sixth ligand. These include lengthening of the Fe-N(NO) bond and a decrease in the Fe-N-O angle. Several other aspects of the geometry of these systems are also discussed, including the first examples of off-axis tilting of a nitrosyl ligand in a six-coordinate [FeNO](7) heme system. We also report the first examples of M?ssbauer studies for these complexes. Measurements have been made in several applied magnetic fields as well as in zero field. The spectra differ from those of their five-coordinate analogues. To obtain reasonable fits to applied magnetic field data, rotation of the electrical field gradient is required, consistent with differing g-tensor orientations in the five- vs six-coordinate species.  相似文献   

9.
Summary Urea (ur), thiourea (tu) and diisopropylthiourea (diptu) form high-spin complexes with iron(II), for which57Fe Mössbauer quadrupole splitting and spectroscopic data suggest an octahedral distorted geometry. The x-ray diffraction study on Fe(tu)4Cl2 confirms this geometry. The crystals are tetragonal, space groupP42/n witha=13.71,c=8.94 Å andZ=4. The molecules are centrosymmetric with two axial chlorine atoms (Fe-Cl=2.46 Å) and four equatorial sulfur atoms (Fe-S=2.61 and 2.57 Å respectively). A similartrans-octahedral geometry is proposed for the new Fe(diptu)4Cl2 complex and an octahedral metal coordination in the new [Fe(ur)6]Br2, Fe(tu)3Br2 and Fe(ur)3Br2 complexes.  相似文献   

10.
11.
Isolation and characterisation of the tetrabutylammonium salt of difluoro iron(III) tetraphenylporphyrin are described.  相似文献   

12.
Anaerobic reaction of ferrous thiocyanate with the deprotonated form of the pentadentate dinucleating Schiff base 1,3-bis[(2-pyridylmethyl)imino]propan-2-ol (LH) yields the novel trinuclear [Fe3L2(NCS)4(H2O)] species 1. LH results from the bis-condensation of 2-acetyl-pyridine with 1,3-diaminopropan-2-ol and includes an N4O donor set. The X-ray crystal structure of 1 [C38H40N12O3S4Fe3, triclinic, space group P-1; a = 10.7730(10) angstroms, b = 12.2048(14) angstroms, c = 19.0559(19) angstroms, alpha = 76.908(12) degrees, beta = 89.106(12) degrees, gamma = 79.637(12) degrees, V = 2399.8(4) angstroms3] can be described either as a bent linear arrangement of ferrous centers pairwise bridged through the alkoxo oxygen atom of L- or as a triangular FeII3 core with an Fe2-SCN-Fe3 bridge as the longer side of the Fe1-Fe2-Fe3 triangle. The metric parameters characterizing the ligand environments of the three ferrous centers in 1 and its M?ssbauer spectra show that this unprecedented trinuclear structure involves two high-spin (Fe2 and Fe3) and one spin-crossover (Fe1) FeII centers. The donor set to the spin-crossover center (Fe1) is unprecedented: two Npyridine, two Nimine, and two Oalkoxo. Weak antiferromagnetic interactions transmitted through the end-to-end NCS bridge and/or through the O1-Fe1-O2 bridge operate between Fe2 and Fe3.  相似文献   

13.
14.
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), [Fe(THFPrP)Py(2)](+), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously (Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209). Although the highly ruffled porphyrin core expected for this complex contributes to the stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state, the strongly electron withdrawing C(3)F(7) groups at the meso positions should stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Thus, we have reexamined the electronic structure of [Fe(THFPrP)Py(2)](+) by means of (1)H NMR, (19)F NMR, and electron paramagnetic resonance (EPR) spectroscopy. The CD(2)Cl(2) solution of [Fe(THFPrP)Py(2)](+) shows the pyrrole-H signal at -10.25 ppm (298 K) in (1)H NMR, the CF(2)(α) signal at -74.6 ppm (298 K) in (19)F NMR, and the large g(max) type signal at g = 3.16 (4.2 K) in the EPR. Thus, contrary to the previous report, the complex is unambiguously shown to adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state. Comparison of the spectroscopic data of a series of [Fe(THFPrP)L(2)](+) with those of the corresponding meso-tetrapropylporphyrin complexes [Fe(TPrP)L(2)](+) with various axial ligands (L) has shown that the meso-C(3)F(7) groups stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Therefore, it is clear that the less common (d(xz), d(yz))(4)(d(xy))(1) ground state can be stabilized by the three major factors: (i) axial ligand with low-lying π* orbitals, (ii) ruffled porphyrin ring, and (iii) electron donating substituent at the meso position.  相似文献   

15.
Aluminum(III) (AlClTFP) and magnesium(II) (MgTFP) porphyrinates were synthesized from free meso-tetra(fluoren-2-yl)porphyrin, aluminum chloride and the MgBr2Et2O complex. The structure of the synthesized compounds was established on the basis NMR and absorption spectroscopy data. The luminescence properties of the new compounds were studied in a toluene solution at 300 K, and the quantum yields of fluorescence were determined by relative method. The quantum yields of fluorescence of MgTFP and AlClTFP (37 and 35%, respectively) are higher than that of parent porphyrin (22%).  相似文献   

16.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   

17.
New hybrid porphyrinic oligomers have been obtained via simultaneous coordination of OH group of zinc(II) hydroxyporphyrinate to the central cation of tin(IV) aminoporphyrinate and coordination of NH2 group of tin(IV) aminoporphyrinate to the central cation of zinc(II) hydroxyporphyrinate; the formed oligomers have been characterized by a complex of physicochemical methods.  相似文献   

18.
Zinc(II) and ruthenium(II) monohydroxyporphyrinates with a different arrangement of the reaction center in the meso-aryl moiety of the macrocycle were synthesized, and their ability of complexing with the methyl esters of glycine and m-aminobenzoic acid in toluene were studied using the methods of spectrophotometric titration and 1H NMR spectroscopy. The stability constants of the resulting complexes and concentration ranges of their existence were determined.  相似文献   

19.
20.
A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号