首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We report the possibility of autocatalytic synthesis of highly crystalline perfect CdTe nanowires by magnetron presputtering deposition through the windows in ultrathin layers of SiO2. The photoluminescence spectra of obtained CdTe nanowires exhibit an emission band in the 1.4–1.7 eV region, indicating crystalline perfection of the nanowires.  相似文献   

2.
Fabrication and characterization of In2O3 nanowires   总被引:1,自引:0,他引:1  
In2O3 nanowires were successfully fabricated through a simple gas-reaction route in argon atmosphere. These nanowires have diameters ranging from 20 nm to 50 nm and lengths up to tens of micrometers. High-resolution transmission electron microscopy observations and the electron-diffraction (ED) pattern reveal that the In2O3 nanowires are formed by the stacking of (2) planes along the [1] direction, which is parallel to the wire axis. A strong and wide ultraviolet (UV) emission band centered at around 392 nm is observed for the first time in the room-temperature photoluminescence measurement in addition to the usual blue emission (468 nm). Moreover, five discrete fine peaks (372 nm, 383 nm, 406 nm, 392 nm and 413 nm) are further identified in this broad UV band. Received: 10 April 2002 / Accepted: 12 April 2002 / Published online: 19 July 2002  相似文献   

3.
Large-scale crystalline boron nanowires (BNWs) were synthesized by a simple chemical vapor deposition method on Au-coated Si substrates using two kinds of innoxious and inexpensive reactant materials as the precursor at relatively low temperature (≤1000°C).The morphology and structural properties of samples were characterized by SEM,TEM,SAED,and XPS analytic instruments.The BNWs have lengths of several tens of micrometers with diameters of 80-150 nm.SAED and HRTEM analytic results testified that BNWs were single crystal core with a thin oxide sheath.By comparison of the BNW samples synthesized at difference temperatures,we conclude that BNWs have lower growth rate at 950°C,whilst the suitable growth rate can be gained at 1000°C.This result shows that BNWs can be synthesized via one step CVD process at 1000°C,and overly high growth temperature (≥1200°C) is probably unnecessary.  相似文献   

4.
Highly aligned Ag nanowires have been synthesized by dc electrodeposition within a hexagonal close-packed nanochannel anodic aluminum oxide template. The pore diameter varies from 20 nm to 50 nm depending on the anodization voltage and temperature for the two types of aqueous solutions, sulphuric and oxalic acids, respectively. The size and morphology of the Ag nanowire arrays were measured by scanning electron microscopy and transmission electron microscopy. The images indicate that the highly aligned Ag nanowires grow in the uniform nanochannels of the anodic alumina template and that the size of the nanowires depends on the size of the nanochannels. X-ray diffraction, selected area electron diffraction pattern and high-resolution transmission electron microscopy images show that the Ag nanowires are single-crystal. The temperature coefficient of resistivity (temperature range from 4.2 K to 300 K) of the Ag nanowire arrays decreases with decreasing diameter of the nanowires. Received: 5 November 2001 / Revised version: 12 March 2002 / Published online: 6 June 2002  相似文献   

5.
6.
Single crystal silicon wafers are widely used as the precursors to prepare silicon nanowires by employing a silver-assisted chemical etching process. In this work, we prepared polycrystalline silicon nanowire arrays by using solar-grade multicrystalline silicon wafers. The chemical composition and bonding on the surface of silicon nanowire arrays were characterized by Fourier Transform Infrared spectroscope, and X-ray photoelectron spectroscope. The photoluminescence spectra of silicon nanowires show red light emissions centered around 700 nm. Due to the passivation effect of Si dangling bonds by concentrated HNO3 aqueous solution, the photoluminescence intensities are improved by 2 times. The influences of surface chemical states on the wettability of silicon nanowire arrays were also studied. We obtained a superhydrophobic surface on the as-etched silicon nanowire arrays without surface modification with any organic low-surface-energy materials, and realized the evolution from superhydrophobicity to superhydrophilicity via surface modifications with HNO3 solutions.  相似文献   

7.
2 at 750 °C and 850 °C. The oxide and interface morphology are characterized by cross-sectional scanning electron microscope images. It is found that the oxidized nanowire following oxidation at 750 °C still keeps its pentagon shape even if it has been oxidized for 19 h. However, the oxidized samples at 850 °C become circular in shape. The oxidation-temperature dependence of the sample shapes is discussed. Our results should be useful in generating silicon nanowires coated with SiO2 in microelectronic technology with careful selection of the SiO2 growth temperatures. Received: 26 September 1997/Accepted: 8 December 1997  相似文献   

8.
Single crystalline CdTe branched nanowires and well-aligned nanorod arrays were simultaneously synthesized by a simple chemical vapor deposition (CVD) technique. X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and selected area electronic diffraction (SAED) were used to study the crystalline structure, composition and morphology of different samples. Vapor-liquid-solid (VLS) and vapor-solid (VS) processes were proposed for the formation of the CdTe branched nanowires and nanorod arrays, respectively. As-grown CdTe nanorod arrays show a strong red emission band centered at about 620 nm, which can be well fitted by two Gaussian curves centered at 610 nm and 635 nm, respectively.  相似文献   

9.
10.
在氩气和氧气混合气氛下,近空间升华法制备了CdTe多晶薄膜。薄膜的结构、性质决定于整个沉积过程。深入研究沉积过程中的热交换、物质输运,有助于获得结构致密具有良好光电性质的CdTe薄膜。分析了近空问沉积的物理机制,测量了近空间沉积装置内的温度分布,讨论了升温过程、气压与薄膜的初期成核的关系。结果表明,不同气压下制备的样品,均有立方相CdTe。此外,还有CdS和SnO2:F衍射峰。CdTe晶粒随气压增加有减小趋势;随气压的增加,透过率呈下降趋势,相应的CdTe吸收边向短波方向移动。采用衬底温度500℃,源温度620℃,在120℃的温差下,沉积时间4min上制备CdTe多晶薄膜,获得转换效率优良的结构为SnO2:F/CdS/CdTe/Au的集成电池。  相似文献   

11.
12.
In this work, GaN nanowires were fabricated on Si substrates coated with NiCl2 thin films using chemical vapor deposition (CVD) method by evaporating Ga2O3 powder at 1100 °C in ammonia gas flow. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM) and photoluminescence (PL) spectrum are used to characterize the samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanowires is also discussed.  相似文献   

13.
宋志明  赵东旭  郭振  李炳辉  张振中  申德振 《物理学报》2012,61(5):52901-052901
一维ZnO纳米结构由于具有比表面积大、室温下具有大激子结合能等特点而受到广泛关注. 但是如何实现纳米结构的器件一直是目前研究的一个挑战. 文章通过水热方法, 在玻璃衬底上实现了ZnO纳米线横向生长, 并制备出基于ZnO纳米线的金属-半导体-金属紫外探测器. 测量结果显示器件在365 nm处探测器的响应度达到5 A/W, 并且制备的探测器在空气中对紫外光照具有快速的响应, 其上升时间约4 s, 下降时间约5 s, 这与ZnO纳米线中的氧空位吸附和脱附水分子相关.  相似文献   

14.
Antimony doped CdTe films electrodeposited in a non-aqueous bath have been characterized using in- and ex-situ techniques. Cyclic voltammetry in dark and under illumination has been used as an in-situ probe to investigate Sb incorporation. The effect of Sb-doping on the composition, structure, morphology, optical and electronic properties have also been investigated using XPS, PIXE, XRD, SEM, AFM, Optical Absorption spectroscopy, resistivity and thermoemf measurements.  相似文献   

15.
Mn-doped ZnO nanowires have been fabricated through a high temperature vapor-solid deposition process. The low-temperature photoluminescence spectra of the samples show that there are multipeak emissions at the ultraviolet (UV) region (about 3.4?C3.0?eV). The excitonic and phonon-assisted transitions in Mn-doped ZnO nanowires were investigated. The results show that there is an obvious oscillatory structure emission at the UV region under low temperature from 12?C125?K. The oscillatory structure has an energy periodicity about 70?meV and the oscillatory structure is mainly attributed to longitudinal optical (LO) phonon replicas of free excitons?(FX). The multipeak emissions at 12?K are attributed to a donor-bound exciton (DBX, 3.3617?eV), 1LO-phonon replicas of a free exciton (FX-1LO, 3.3105?eV), 2LO-phonon replicas of a free exciton (FX-2LO, 3.2396?eV), and 3LO-phonon replicas of a free exciton (FX-3LO, 3.1692?eV), respectively. The intensity of UV emission and the efficiency of emission from the Mn-doped ZnO nanowires are improved.  相似文献   

16.
Diluted magnetic semiconductor Cd0.94Mn0.06S nanowires were fabricated by a modified DC electrochemical method depositing in anodic aluminum oxide nanoporous templates. It was found that crystal defects induced by nonuniform distribution of manganese were improved by heat treatment. Redistribution of manganese greatly improves the magnetic properties. A magnetic order transition temperature over 300 K was observed. Coercivities of 100 and 300 Oe were measured at 300 and 45 K, respectively.  相似文献   

17.
Metallic (Ni, Co, Cu and Fe) nanowires were fabricated by electrodeposition into anodic aluminum oxide (AAO) template. In this work, we have studied the effect of the electrode potential on the microstructure and magnetic properties of nanowires. Transmission electron microscopy (TEM) results showed that the metal nanowires were single-crystal. Cu and Ni nanowires had the same orientation along the [2 2 0] direction, while Co had a preferred orientation along the [1 0 0] direction. Fe nanowires had a preferred orientation along the [2 0 0] direction. The growth mechanisms are probably due to the competition growth of the adjacent grains and the confinement of growth in the nano-sized hole of the AAO template. Results showed that single crystal or highly textured nanowires had better magnetic properties compared with that of polycrystal nanowires in terms of coercivity and squareness.  相似文献   

18.
Preparation and characterization of oriented silica nanowires   总被引:1,自引:0,他引:1  
Large-scale of oriented closely packed silica nanowire bunches have been synthesized by using large size (1-10 μm in diameter), low melting point tin droplets as catalyst on silicon wafers at 980 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that the amorphous silica nanowires have lengths of 50-100 μm and diameters of 100-200 nm. Unlike any previous observed results using high melting point metal (such as gold and iron) as catalyst, the Sn catalyst growth exhibits many interesting phenomena. Each Sn ball can simultaneously catalyze the growth of many silica nanowires, which is quite different from the conventional vapor-liquid-solid process.  相似文献   

19.
This study developed a facile and scalable thermal oxidation method to prepare CuO nanowires on the electro-discharge machining (EDM) processed V-shaped microgrooves. The formation feasibility, surface morphology, and wetting properties of nanowires on V-shaped microgrooves were explored by the variation of thermal oxidation temperatures from 300 to 600 °C, and oxidation times from 2 h to 8 h. Nanowires were found to successfully synthesized on the V-shaped microgrooves surfaces when annealing temperature was 400 °C or higher. The microvoids or microcavities on the EDM processed V-shaped microgrooves surfaces contributed to the stress grain boundary (GB) diffusion of copper atoms, and facilitated the growth of nanowires. The diameter of nanowires increased monotonically when the annealing temperatures increased, whereas it almost kept unchanged with increasing annealing times. The length of nanowires was influenced positively by both annealing temperature and annealing time. All the nanowire samples showed hydrophobic properties of water.  相似文献   

20.
FePt and FePt/Ag multilayered nanowires were fabricated by a pulseplating technique in nanoporous anodic alumina templates. The effect of Ag layers on the chemical ordering of FePt was investigated. It is found that the ordering rate of FePt is enhanced by introducing Ag layers in the FePt nanowire during post-deposition annealing. Measurements of the structure and magnetic properties of FePt 5 nm/Ag 1 nm multilayered nanowires reveal that the disorder-order transformation temperature of FePt is lowered to 350 °C. The possible reason for the enhancement in the ordering of FePt by introducing the Ag layers in the FePt nanowire is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号