首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of deposition rate on the microstructure and thermoelectric (TE) properties of Ca3Co4O9 thin films fabricated by pulsed laser deposition (PLD) technique were investigated. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) revealed that a fast deposition rate resulted in not only low crystallinity but also the existence of the CaxCoO2 secondary phase. Formation of CaxCoO2 was inevitable during the thin film growth, and this was discussed from both structural and compositional point of view. With longer deposition interval or with sufficient oxygen at a lower deposition rate, the CaxCoO2 phase was able to transit into the desired Ca3Co4O9 phase during the coalescence process. The quality of the thin films was further analyzed by electrical properties measurements. The Ca3Co4O9 thin film fabricated at a slower deposition rate was found to exhibit a low electrical resistivity of 9.4 mΩ cm and high Seebeck coefficient of 240 μV/K at about 700 °C, indicating a good quality film.  相似文献   

2.
S.C. Cheng 《Journal of Non》2008,354(31):3735-3741
Electron energy loss spectroscopy (EELS) techniques have been applied to investigate both the coordination and optical attenuation of TiO2-SiO2 glass. The coordination was determined from the electron energy loss near edge fine structure (ELNES) of Ti L2,3-edges, and the results show that Ti ions substitute for Si ions in the tetrahedral coordinated sites. The optical attenuation of the glass was obtained from low energy loss of EELS data through Kramers-Kronig analysis, and the results show that Ti-doped silica has an absorption edge near 4.0 eV.  相似文献   

3.
L.Y. Zhu 《Journal of Non》2009,355(1):68-207
ZrxTi1−xO2 (x = 0.1-0.9) fibers were prepared by the sol-gel dry-spinning method. Polyacetylacetonatozirconium (PAZ) and tetrabutyl titanate (C16H36O4Ti) were used as raw materials. The green fibers were obtained from the amorphous spinnable solution and then heat-treated to convert into polycrystalline fibers. The main phase changes from TiO2 to zirconium titanate (ZT) and then tetragonal ZrO2 with increasing ZrO2 content. The crystallization temperature varied with the molar ratio of Zr:Ti. The heat-treated fibers at 1050 °C have few pores and no cracks with diameters of 10-20μm and lengths of 1-5 cm.  相似文献   

4.
Titanium dioxide (TiO2) coatings have been long considered as biocompatible interfaces to promote the physico-chemical bonding between the bone tissues and implant material (e.g., titanium and stainless steel). Monodispersed TiO2 (anatase, the low temperature polymorph of TiO2) microspheres, produced in the form of colloidal precipitates, were deposited on different substrates and apatite formation was induced on the resulted surface by immersing the coated substrates in simulated body fluid solution. Analytical and microstructural investigations, conducted by X-ray diffraction, energy depressive X-ray spectroscopy and scanning electron microscopy techniques, showed considerable higher rates of apatite formation, in vitro, on the anatase microspheres compared to the sol-gel-derived thin films of the same oxide. We concluded that the particular surface morphology of the packed TiO2 microspheres, promotes a faster apatite formation in vitro.  相似文献   

5.
The refractive index, optical absorption coefficient α and the thermomodulated absorption dα/dT have been measured on 70% TiO2?30% SiO2 glasses with up to 8% Ti3+. The direct absorption data show intense ligand field absorption at photon energies = 1.9 and 3.0 eV, arising from Ti3+ in a distorted octahedral environment. In the bandgap region at 3.5 eV α obey αhν ~ ( ? Eg)2; it is qualitatively different from the bandgap absorption in crystalline TiO2. The da/dT spectra show peaks in the bandgap region and at 1.1 eV in the near IR. This last peak is attributed to absorption by small polarons, and its line shape is compared with theoretical predictions.  相似文献   

6.
We report a method for synthesizing TiO2 nanostructures by applying microwave irradiation (1200 W, 2.45 GHz, single-mode) to a Ti substrate under an atmosphere comprising of O2 and Ar. After 1200 W microwave irradiation, one-dimensional (1D) nanostructure arrays were synthesized on the surface of the substrate. The average dimensions of the 1D structures were 200 nm in length and 30 nm in diameter. The structures were single crystalline. The EDX elemental maps of the areas examined using HAADF-STEM demonstrated that Ti and O were distributed homogeneously throughout the nanostructure. Quantitative analysis of the mean atomic ratios in the nanostructures disclosed a Ti:O ratio of 0.331:0.669. XPS analysis demonstrated that the predominant oxidation state of Ti in the samples was +4. On the basis of these results, we propose a possible mechanism for the formation of the TiO2 nanostructures via microwave irradiation.  相似文献   

7.
The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (α-alumina) and SiO2 (α-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  相似文献   

8.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

9.
We report the deposition of thin titanium dioxide films on Si(1 0 0) and silica glass at low temperatures between 200 and 350 °C by a technique of ultraviolet-assisted injection liquid source chemical vapor deposition (UVILS-CVD) with 222 nm radiation. The composition and optical properties of the films deposited have been studied using a variety of standard characterisation methods. A strong absorption peak around 438 cm−1, corresponding to Ti-O stretching vibration, was observed by Fourier transform infrared spectroscopy for different deposition temperatures. Nanostructured films on Si wafers were observed by atomic force microscopy while X-ray diffraction results showed that crystalline TiO2 layers could be formed at deposition temperatures as low as 210 °C. The deposition kinetics and influence of the substrate temperature on the film are discussed. The activation energy for this photo-CVD process at temperatures between 200 and 350 °C was found to be 0.435 eV. This is much lower than the value (Ea=5.64 eV) obtained by conventional thermal CVD. The thicknesses of the films grown, from several nanometers to micrometers can be accurately controlled by changing the number of drops introduced by the injection liquid source. Under optimum deposition conditions, refractive index values as high as 2.5 and optical transmittance of between 85% and 90% in the visible region of the spectrum can be obtained.  相似文献   

10.
Glasses P2O5-Na2O-CaO-TiO2 with different TiO2 contents and fixed P2O5 (45 wt%) and CaO (24 wt%) have been prepared employing the normal melting and annealing technique. Measurements such as ultrasonic velocity, attenuation, solubility and pH have been carried out in all the compositions of the glasses. It is interesting to note that the above measured ultrasonic parameters exhibit an abnormal behavior (minimum) at 0.5 wt% of TiO2 content, beyond which an increase in these parameters with increasing TiO2 content is observed. The maximum pH values and Ca2+ ion release have been observed for the TiO2 free glass those compositions with and the low TiO2(?1.0 wt%) content. As the content of the TiO2 increases, the solubility of the glasses decreases. The observed weight loss reveals two stages of phosphate dissolution kinetics i.e. the first stage, in which the weight loss is proportional to t1/2, and a second stage in which a linear behavior is observed.  相似文献   

11.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

12.
We report here the successful inclusion of carbon nanotubes (CNs) into a TiO2 matrix prepared by a sol-gel method. The presence of CNs in the sol-gel matrix and the structure of the film were analyzed principally by transmission electron microscopy. Complementary information about the behavior of embedded carbon nanotubes versus heat treatment and ion irradiation were obtained by X-ray photoelectron spectroscopy. The elaboration of an inorganic matrix containing embedded carbon nanotubes leads to a new nanocomposite. The possible applications of this nanocomposite are discussed.  相似文献   

13.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

14.
SiO2 samples were implanted with 45 keV Zn ions at doses ranging from 5×1015 to 1.0×1017 ions/cm2, and were then subjected to furnace annealing at different temperatures. Several techniques, such as ultra-violet–visible spectroscopy (UV–vis), grazing incidence X-ray diffraction spectroscopy (GXRD) and atomic force microscopy (AFM), have been used to investigate formation of nanoparticles and their thermal evolution. Our results clearly show that Zn nanoparticles could be effectively formed in SiO2 at doses higher than 5×1016 ions/cm2. The subsequent thermal annealing at oxygen ambient could induce the growth of Zn nanoparticles at intermediate annealing temperature range. While at temperature above 600 °C, Zn nanoparticles could be transformed into ZnO, or even Zn2SiO4 nanoparticles. The results have been tentatively discussed in combination with Zn diffusion and migration obtained by Rutherford backscattering spectroscopy (RBS) measurements.  相似文献   

15.
Three heteroacidoligand uranyl complexes M 4[(UO2)2C2O4(SO4)2(NCS)2] (M = K+ (I), Rb+ (II)) and K4[(UO2)2C2O4(SeO4)2(NCS)2] (III) have been synthesized and their crystal structure has been determined by X-ray diffraction analysis. The compounds I–III are isostructural and crystallized in the monoclinic system, sp. gr. P21/c, Z = 2, a = 11.5548(3) ?, b = 7.0847(1) ?, c = 13.5172(3) ?, β = 93.130(1)°, V = 1104.90(4), R = 0.015 (I); a = 11.5854(9) ?, b = 7.3841(6) ?, c = 13.9072(9) ?, β = 95.754(3)°, V = 1183.74(15), R = 0.0235 (II); a = 11.6715(3) ?, b = 7.1418(2) ?, c = 13.8546(1) ?, β = 93.539(1)°, V = 1152.66(5), R = 0.0126 (III). Basic structural units of these crystals are [(UO2)2C2O4(XO4)2(NCS)2]4− chains, which belong to the crystallochemical group A 2 K 02 B 22 M 21 (A = UO22+, K 02 = C2O2−4, B 2 = SO42− or SeO42−, M 1 = NCS) of uranyl complexes. Uranium-containing chains are connected into a 3D framework via a system of electrostatic interactions with potassium or rubidium cations from outer spheres. Original Russian Text ? I.V. Medrish, E.V. Peresypkina, A.V. Virovets, L.B. Serezhkina, 2008, published in Kristallografiya, 2008, Vol. 53, No. 3, pp. 495–498.  相似文献   

16.
Bi3.15Nd0.85Ti2.8-xZr0.2MnxO12 (BNTZM) thin films with various Mn content (x = 0, 0.005, 0.01, 0.03, and 0.05) have been prepared on Pt/Ti/SiO2/Si (100) substrates by a chemical solution deposition (CSD) technique. The crystal structures of BNTZM thin film have been analyzed by X-ray diffraction (XRD). The dependence of Mn contents on the ferroelectric, dielectric properties, and leakage current of these BNTZM films have been thoroughly investigated. The XRD analysis demonstrated that all the BNTZM thin films were of typical bismuth-layer-structured ferroelectrics (BLSF) polycrystalline structure and exhibited a highly preferred (117) orientation. Among these BNTZM films, the BNTZM thin film with Mn content equal to 0.01 exhibits the maximum remnant polarization (2Pr) of 48μC/cm2 and a low coercive field (2Ec) of 177 kV/cm. In addition, the BNTZM thin film with x = 0.01 (Mn) showed a fatigue-free behavior up to 1 × 1010 read/write cycles.  相似文献   

17.
The vitrification and crystallization behavior of melts produced at 1400 °C in the ternary system of K2O-B2O3-TiO2 is investigated. It is shown that there are two fields of compositions (indicated in mol%) which allow obtaining the glass-ceramic materials with continuous glassy matrix after the cooling of molten compositions. In the first field [TiO2] = 25-57, [K2O] = 30-50 and [B2O3] = 0-25, the glass-ceramics consisted of the potassium-titanium-borate glassy phase and different crystalline potassium titanates (K4Ti3O8, K2Ti2O5, K2Ti4O9, K2Ti6O13). The ratio of TiO2:K2O in the obtained titanates increases with [TiO2] and [B2O3]. In the second field, [TiO2] = 7-37, [K2O] = 0-25 and [B2O3] = 52-93, the obtained glass-ceramics consisted of a similar vitreous phase, as mentioned above, and TiO2 crystals. During the cooling of the melts, short whiskers-like crystals of anatase formed in the compositions with relatively low [TiO2] and relatively high [K2O], whereas long fiber-shaped crystals of rutile appeared with the compositions characterized with relatively high [TiO2] and relatively low [K2O]. The possible application of the obtained glass-ceramic materials as a source of fibrous TiO2, for composite reinforcement, and as solid lubricants is discussed.  相似文献   

18.
Hyun-Chul Kim 《Journal of Non》2004,336(2):107-112
(Ba, Sr)RuO3 oxide electrodes have been studied for high dielectric (Ba, Sr)TiO3 film in DRAM capacitors. Metal organic chemical vapor deposition (MOCVD) is used for large-scale deposition and provides better step coverage properties. In this work, methoxyethoxytetramethylheptanedionate (METHD) precursor and solvent [n-butylacetate(C6H12O2)] were mixed together into a single solution source. Post deposition annealing is carried out in oxygen atmosphere using rapid thermal annealing (RTA) to investigate the effect of organic impurities such as carbon during deposition. After annealing, resistivity of the BSR film decreased drastically compared to the as-deposited film. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis were used to describe this phenomenon accurately. The decrease in carbonate with increasing annealing time was confirmed by XRD analysis.  相似文献   

19.
The sol-gel route has been applied to obtain ZnO-TiO2 thin films. For comparison, pure TiO2 and ZnO films are also prepared from the corresponding solutions. The films are deposited by a spin-coated method on silicon and glass substrates. Their structural and vibrational properties have been studied as a function of the annealing temperatures (400-750 °C). Pure ZnO films crystallize in a wurtzite modification at a relatively low temperature of 400 °C, whereas the mixed oxide films show predominantly amorphous structure at this temperature. XRD analysis shows that by increasing the annealing temperatures, the sol-gel Zn/Ti oxide films reveal a certain degree of crystallization and their structures are found to be mixtures of wurtzite ZnO, Zn2TiO4, anatase TiO2 and amorphous fraction. The XRD analysis presumes that Zn2TiO4 becomes a favored phase at the highest annealing temperature of 750 °C. The obtained thin films are uniform with no visual defects. The optical properties of ZnO-TiO2 films have been compared with those of single component films (ZnO and TiO2). The mixed oxide films present a high transparency with a slight decrease by increasing the annealing temperature.  相似文献   

20.
CuInSe2 (CIS) chalcopyrite thin films were prepared using a low-cost, non-vacuum doctor-blade coating and the thermal annealing method. An acetone-based precursor solution containing copper chloride, indium chloride, selenium chloride, and an organic binder was deposited onto a Mo-sputtered soda lime glass substrate using a doctor-blade coating method. After coating, the precursor films were annealed in a quartz tube furnace under low vacuum without the use of a Se atmosphere or reduction conditions. Evolution of the morphology, crystal structure, and thermal decomposition behavior of the films was analyzed by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, and the film formation mechanism was suggested. The as-deposited precursor film gradually decomposed with increase in temperature and formed Cu2−xSe and In2Se3 nuclei on the surface of the film. Incorporation of Cu2−xSe with In2Se3 yielded a chalcopyrite CIS phase, which crystallized on annealing above 400 °C. The obtained CIS film showed low-resistive ohmic behavior with a Mo electrode and a high absorption efficiency for visible–infrared (IR) light, making it suitable for use in photovoltaic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号