首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Non》2006,352(21-22):2166-2172
The object of this research was to investigate the effects of various precursors and different fabricating procedures of Pd/Al2O3–CeO2 catalysts by the sol–gel method. The physicochemical properties and structures of catalyst were characterized with BET surface area, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). The performance of the Pd/Al2O3–CeO2 catalyst was also evaluated by CO oxidation tests with a continuous quartz reactor. The results indicated that the catalyst prepared with inorganometallic precursors showed a high dispersion of Pd, large surface area and pore volume, and a high activity in CO oxidation. The higher redox interaction between Pd and Ce of the support starting with inorganometallic precursors, as determined from X-ray powder diffraction, is suggested as being responsible for such a catalytic behavior.  相似文献   

2.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

3.
The nonlinear optical (NLO) properties of Bi2O2(OH)(NO3) crystals have been reported for the first time. Bi2O2(OH)(NO3) crystals with dimensions of 1.3×1.2×0.1 mm3 have been grown by hydrothermal method, and the crystals characterized by X‐ray powder diffraction (XRD), SEM and IR. The measured second harmonic generation (SHG) effect of Bi2O2(OH)(NO3) was about 7 times that of KDP. The mechanism responsible for the large SHG of Bi2O2(OH)(NO3) was explained according to its structure. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.  相似文献   

5.
The phase separation and crystallization behavior in the system (80 − X)SiO2 · X(Al2O3 + P2O5) · 5B2O3 · 15Na2O (mol%) glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al2O3-P2O5-SiO2 and forms a continuous phase. Glasses containing a larger amount of Al2O3-P2O5 (X = 40 and 50) readily crystallize and precipitates tridymite type AlPO4 crystals. It is estimated that the phase separation occurs forming continuous Al2O3-P2O5-SiO2 phase at first, and then tridymite type AlPO4 crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20-30 nm and about 50%, respectively.  相似文献   

6.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

7.
Shengchun Li  B. Li  J.J. Wei 《Journal of Non》2010,356(43):2263-2267
(30 − x/2)Li2O·(70 − x/2)B2O3·xAl2O3(x = 0, 5 and 10) composite gels have been fabricated by the sol-gel method. LiOCH3, B(OC4H9)3, and Al(OC4H9)3 were used as precursor for Li2O, B2O3, and Al2O3, respectively. B(OC4H9)3 and Al(OC4H9)3 were hydrolyzed separately and then mixed. The crystallization behavior and structure of the gels upon thermal treatment temperatures between 150 and 550 °C are characterized on the basis of SEM, XRD and IR analyses. Xerogel with x = 0 exhibits non-crystal features, whereas crystalline phases are found in the xerogels with x = 5 and 10. The crystalline phases are not found with increasing heat treatment temperatures from 150 to 450 °C, but crystalline phases appear present at 550 °C. The xerogel with x = 0, subject to thermal treatment below 450 °C, is found to be still amorphous, and a 550 °C heat treatment leads its structure changing from glassy to crystalline.  相似文献   

8.
Raman and infrared spectroscopy have been employed to investigate the 99.5%[xB2O3(1−x)Bi2O3]0.5%CuO glasses with different Bi/B nominal ratios (0.07?x?0.625) in order to obtain information about the competitive role of B2O3 and Bi2O3 in the formation of the glass network. The glass samples have been prepared by melting at 1100 °C and rapidly cooling at room temperature. In order to relax the structure, to improve the local order and to develop crystalline phases the glass samples were kept at 575 °C for 10 h. The influence of both Bi2O3 and CuO on the vitreous B2O3 network as well as the local order changes around bismuth and boron atoms in as prepared and heat treated samples was studied. Structural modifications occurring in heat treated samples compared to the untreated glasses have been observed.  相似文献   

9.
α-Bi2B8O15 crystals (5-to 7-mm-thick, 2.7 × 2.7 cm2 in cross section) have been grown by the Czochralski method from a melt of stoichiometric (Bi2O3: B2O3 = 20: 80) and nonstoichiometric (Bi2O3: B2O3 = 21.9: 78.1) compositions. It is established that there is a solid-solution range from 78.1 to 84.7 mol % B2O3 for α-Bi2B8O15. The structure of a Bi2(B8O15)(Bi2O3)0.06 crystal, which was grown from a melt of nonstoichiometric composition and is an interstitial solid solution, has been refined (sp. gr. P21).  相似文献   

10.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

11.
Pb(PO3)2-TeO2 glasses in the whole range of glass composition were first obtained and their properties (refractive index, density, Tg and light scattering losses) were determined. Based on the vibrational spectroscopy data a new approach was applied to investigate the interactions of initial oxides in melts resulted in so-called constant stoichiometry groupings (CSGs) formation symbolizing intermediate range order in glasses. Vibrational spectra of glasses are interpreted as a superposition of unchangeable spectral forms (principal spectral components (PSCs)) belonging to CSGs: PbO · P2O5, TeO2 · 2PbO · 2P2O5, TeO2 · PbO · P2O5, TeO2, and possibly 2TeO2 · PbO · P2O5 and 6TeO2 · PbO · P2O5. In this work Multivariate Data Analysis has been applied as the independent mathematical tool to decompose Raman spectra of glasses and reveal the number of PSCs. It is shown that application of factor analysis results in the same five PSCs that confirms our data obtained from the CSG concept. This concept allows also the prediction of the existence of unknown compounds, and correspondingly some crystals (TeO2⋅ 2PbO⋅2P2O5 and others) were revealed by XRPD of the crystallized glasses. The CSG concept opens the way for elaboration of low scattering glasses as candidates for Raman amplifiers. It is shown that Pb(PO3)2-TeO2 glasses with small content of TeO2 are of interest to photonic technology.  相似文献   

12.
Room temperature electron spin resonance (ESR) spectra and temperature dependent magnetic susceptibility measurements have been performed to investigate the effect of iron ions in 41CaO · (52 − x)SiO2 · 4P2O5 · xFe2O3 · 3Na2O (2 ? x ? 10 mol%) glasses. The ESR spectra of the glass exhibited the absorptions centered at g ≈ 2.1 and g ≈ 4.3. The variation of the intensity and linewidth of these absorption lines with composition has been interpreted in terms of variation in the concentration of the Fe2+ and Fe3+ in the glass and the interaction between the iron ions. The magnetic susceptibility data were used to obtain information on the relative concentration and interaction between the iron ions in the glass.  相似文献   

13.
Diffusion coefficients of various polyvalent ions (Sn2+, As3+, As5+, Sb3+, Sb5+, Cr3+, Ti4+, V4+, V5+ and Fe3+) were measured in melts with the basic compositions of 10CaO·10 BaO·10Al2O3·70SiO2 and 10CaO·10BaO·15Al2O3·65SiO2 by means of square-wave voltammetry. At temperatures in the range of 1300-1600 °C, linear correlations between logD and 1/T were observed. At 1400 °C, the diffusion coefficients obtained are compared with those obtained from other glass melt compositions.  相似文献   

14.
The effect of Y2O3 addition on the phase transition and growth of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl2 · 8H2O and Y(NO3)3 · 6H2O ethanol-water solutions at low temperatures has been studied. DTA/TGA, XRD, SEM, TEM and ED have been utilized to characterize the YSZ nanocrystallites. The crystallization temperature of 3YSZ, in which Y2O3/(Y2O3 + ZrO2) = 0.03, gel powders estimated by DTA/TG is about 427 °C. When 3YSZ and 5YSZ gels are calcined at 500-700 °C, their crystal structures as composed of coexisting tetragonal and monoclinic ZrO2, and tetragonal phase decreases with calcination temperature increasing from 500 to 700 °C. Pure cubic ZrO2 is obtained when added Y2O3 is greater than 8 mol%. A nanocrystallite size distribution between 10 and 20 nm is obtained in TEM observations.  相似文献   

15.
Measurements of two-photon absorption (TPA) coefficients β at 532 nm in binary Bi2O3:B2O3 glasses are reported. The β obtained ranges from 12.9 to 16.4 cm/GW with the larger value observed in higher Bi2O3 glass. The relationship between β and glass composition is discussed in terms of the electronic structure of glasses: β can be scaled with optical band gap.  相似文献   

16.
Transparent glasses composition of which can be expressed by the formula: (100−x) · (K2O · 2TiO2 · P2O5) · x(K2O · 2B2O3 · 7SiO2), where x=5, 10, 15 and 20 mol% (KTP-xKBS), were obtained by melt quenching technique. The structure and crystallization behavior of these glasses have been examined by Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. In spite of their nominal composition, the studied glasses exhibit a similar oxygen polyhedra distribution. However, significant differences were found in the trigonal BO3 units amount. During DTA runs all the examined glasses devitrify in two steps. In the former, very small crystals of an unknown crystalline phase are produced. In KTP-5KBS and KTP-10KBS glasses anatase phase was also detected. Attempts were made in order to identify the unknown phase (UTP) for which a AB3(XO4)2(OH)6 Crandallite-type structure was proposed where the A, B and X sites were occupied by K, Ti and/or Al, and P, respectively. In the second devitrification step the crystallization of the KTiOPO4 phase occurs while the UTP phase previously formed disappears. Isothermal heat treatments performed at temperature just above Tg have allowed one to obtain transparent crystal-glass nanocomposites, formed by crystalline nanostructure of the UTP phase uniformly dispersed in the amorphous matrix.  相似文献   

17.
Tomoharu Hasegawa 《Journal of Non》2011,357(15):2857-4499
Glasses of the Bi2O3-TeO2-B2O3 ternary system were developed and their linear and nonlinear optical properties were investigated. The absorption edges of these glasses were found to be 367-384 nm with a good transmittance in visible wavelength, although they exhibit the refractive indices as high as 1.98-2.12 at 633 nm. The absorption edges are quite steep and they are analyzed by the Urbach theory. The obtained Urbach energies of these glasses are 73-79 meV which are comparable to silica glasses. The high refractive index and its glass composition dependency are discussed according to the basics of the electronic polarizability and optical basicity. The high third order nonlinear susceptibility χ(3) = 2.0 × 10− 12 esu at 800 nm was also obtained in the 36Bi2O3-18TeO2-46B2O3 glass.  相似文献   

18.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

19.
Melting and crystallization scenarios of barium tetraborate BaB4O7 (BaO·2B2O3) are studied in situ by Raman spectroscopy. It is shown that the scenario depends on the temperature–time history of melt. Crystallization conditions of the beta modification of barium tetraborate (β-BaB4O7) from a stoichiometric glass structure BaO·2B2O3 were investigated.  相似文献   

20.
The effect of doping CuO-ZnO system with CeO2 on its surface and catalytic properties was investigated using nitrogen adsorption at −196 °C, EDX technique and catalysis of CO oxidation by O2 at 100-200 °C. Pure mixed solids were prepared by thermal decomposition of copper/zinc mixed hydroxides at 400 °C. The doped solids were obtained by impregnating a known mass of mixed hydroxides with calculated amount of cerium ammonium nitrate followed by drying then calcination at 400 °C. The dopant concentration was 1.5, 3.0 and 4.5 mol% CeO2. The results revealed that CeO2-doping modified the surface atomic Cu/Zn ratio of the system investigated and changed the crystallite size of both CuO and ZnO phases. The increase of the amount of dopant added changed the major phase present. This treatment decreased the specific surface area of doped solids. The doping process modified also the catalytic activity in a manner dependent on both mode of preparation and dopant concentration. However, CeO2-doping did not modify the mechanism of the catalytic reaction but changed the concentration of catalytically active sites involved in the catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号