首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two series of polymeric mixed-valent diruthenium (II,III) aliphatic carboxylates of formula Ru2[O2C(CH2)n-2CH3]4X (where X=dodecylsulfate (DOS) anion and n=8, 9, 16 and 18, or X=octylsulfonate (OS) anion and n=8, 10, 12, 14 and 18) were synthesized and characterized. Their liquid crystalline properties and crystalline (Cr) structures were analysed; the Cr phases are lamellar in all cases. For long chain DOS derivatives (n=16 and 18) hexagonal and rectangular columnar mesophases (Colh and Colr) with melting temperatures close to 140°C were observed. For long chain OS derivatives (n≥10) a Colh mesophase was observed, with melting temperatures between 140 and 190°C.  相似文献   

2.
In comparison to conventional C18 phases, C30 phases exhibit superior shape selectivity for the separation of isomers of carotenoids and vitamins. To obtain this enhanced recognition capability the HPLC separation must be performed at a well-defined temperature. At higher temperatures the capability of differentiating between different stereochemical isomers is lost, resulting in peak coelution. This separation behaviour is primarily dependent upon the organisation of the C30 alkyl chains on the silica surface which can be visualised as two domains, the more ordered domain containing relatively rigid n-alkyl groups with trans conformations and the less ordered environment containing more flexible n-alkyl groups with gauche conformations. The ratio between trans vs. gauche conformations of the n-alkyl groups directs the shape selectivity of the C30 phase. The temperature-dependent interconversion of trans to gauche conformations can be monitored by temperature-dependent solid-state nuclear magnetic resonance (NMR) and suspended-state NMR measurements and visualised by molecular modelling calculations. Thus a direct correlation between chromatographic and physicochemical properties of C30 bonded phases is possible.  相似文献   

3.
A new double-chain surfactant molecule, sodium n-butyl(n-hexyl)phosphate (BHP), having an asymmetric molecular structure, has been synthesized. For anhydrous BHP in the solid state and the BHP---H2O system in the lyotropic liquid crystalline and coagel states, the Raman scattering spectra arising from the accordion vibrational mode were studied in the temperature range −170 to 25°C. For anhydrous BHP, the GG form about the phosphodiester P---O bonds was preferentially stabilized at lower temperature. In the coagel phase of the BHP---H2O system, preferential stabilization of a specific conformation about the P---O bonds occurred and which molecular form was stabilized was dependent on the water content: for the 8:2 BHP---H2O sample in the coagel the GT form was stabilized, while for the 7:3 BHP---H2O coagel sample the TT form was preferentially stabilized. The stabilization of such a specific conformation was also reflected in the higher-frequency region.  相似文献   

4.
The thermotropic behaviour of sodium oleate (NaOl) has been studied in the temperature range 10–125°C by using Fourier transform-Raman spectroscopy, X-ray diffraction and differential scanning calorimetry (DSC). The temperature dependence of conformationally sensitive bands in the CH2 stretching (2800–2900 cm−1), C–C stretching (1050–1150 cm−1) and CH3 rocking region (830–900 cm−1) has been used to characterize the order/disorder behaviour of alkyl chains. It is found that in phase I, NaOl exhibits the crystalline ordered lamellar structure with a repeat period of 4.51 nm. The first broad peak in the DSC trace is due to superposition of two transitions (phase I to phase II and phase II to phase III), therefore, it is not possible to determine the lamellar structure of phase II. This broad transition from phase I to phase III is associated with the melting of methyl-sided chains and increase in gauche conformers in carboxylate-sided chains. Finally, NaOl undergoes a transition from crystalline to a liquid crystalline phase IV, which is associated with the melting of the carboxylate-sided chain.  相似文献   

5.
The influence of temperature on the performance of an enantioselective anion-exchange type chiral selector (SO) was systematically investigated. The resolution of the enantiomers of 23 N-acylated amino acids (selectands, SAs) on a covalently immobilized quinine tert.-butylcarbamate chiral stationary phase (CSP) was studied under linear chromatographic conditions over a temperature range of 0–85 °C with hydro–organic buffers (pHa 6.0) as mobile phases. The apparent enantioseparation factors increased considerably at low column temperatures, indicating that enthalpic contributions are the dominating thermodynamic driving force for chiral recognition for all investigated SAs. Retention factors gave non-linear van’t Hoff plots, while the corresponding apparent enantioseparation factors showed linear van’t Hoff behavior. Correlations between magnitude and sign of the relative thermodynamic parameters of enantioselective adsorption (ΔΔG, ΔΔH and ΔΔS) and specific structural features of the analytes, i.e., steric and electronic nature of the various side chains and the N-acyl groups, are discussed with the aim to rationalize their possible contributions to the overall chiral recognition.  相似文献   

6.
CoAl-MCM-41 (X) catalysts with X = nSi/(nCo + nAl) various ratios were synthesized and ethylation of phenol with ethanol was studied in vapor-phase at temperatures between 250 and 450 °C. The products obtained were O-alkylated product (ethyl phenyl ether), C-alkylated products (2-ethylphenol and 4-ethylphenol), and C-/O-alkylated products (ethyl ethylphenyl ether). The phenol conversion increased significantly with reaction temperature over all the catalysts. The activity of the catalysts followed the order CoAl-MCM-41 (20) > CoAl-MCM-41 (50) > CoAl-MCM-41 (80). Selectivity between the C-alkylation and the O-alkylation depended on the factors such as acidity of the catalyst and the reaction temperature. CoAl-MCM-41 (20) catalyst displayed a phenol conversion of 40% and a selectivity of more than 80% for 2-ethylphenol under the optimized reaction condition. The ethanol to phenol ratios and the reactant flow rate are also influential for both activity and selectivity of CoAl-MCM-41 catalysts.  相似文献   

7.
Synthesized hydrated lamellar acidic crystalline magadiite (H2Si14O29·2H2O) nanocompound was used as host for intercalation of polar n-alkylmonoamine molecules of the general formula H3C(CH2)nNH2 (n = 1–6) in aqueous solution. The original interlayer distance (d) of 1500 pm, determined by X-ray powder diffraction patterns, increases after intercalation. The values correlated with the number of aliphatic amine carbon (nc) atoms: d = [(1312 ± 11) + (21 ± 2)]nc. The amount of intercalated amines (Ns), decreased as nc increased: Ns = [(5.82 ± 0.04) − (0.45 ± 0.01)]nc. The acidic layered nanocompound was calorimetrically titrated with the amines and the thermodynamic data gave exothermic values for all guest molecules, as shown by the correlation: ΔintH = −[(24.45 ± 0.49) − (1.91 ± 0.10)]nc and d = [(1576 ± 16) − (10.8 ± 1.0)]ΔintH. The negative values of the Gibbs energies and the positive entropies also presented the correlations: ΔintG = −[(22.8 ± 0.2) − (0.2 ± 0.1)]nc and ΔintS = [(6 ± 1) + (5 ± 1)]nc, respectively.  相似文献   

8.
The synthesis of 2,4,6-triarylpyrylium tetrafluoroborates substituted by six long alkyloxy chains (n = 8 and 12) is described. These salts exhibit a discotic mesophase from room temperature to 200°C. X-ray diffraction experiments on powder and oriented samples show that this phase is an ordered hexagonal columnar phase, Dho.  相似文献   

9.
Binuclear copper(11) complexes of fatty acids crystallize at room temperature in a lamellar lattice that has been characterized by X-ray diffraction. A transition to a thermotropic columnar mesophase is observed at about 110-120°C for each compound of the series n = 12 to n = 22, n being even and equal to the number of carbon atoms in the corresponding fatty acid. This columnar mesophase has been investigated by polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Columns of polar copper carboxylate groups are surrounded by disordered aliphatic chains, and form a two-dimensional hexagonal lattice. The repeating unit in a column is a binuclear dicopper tetracarboxylate complex.  相似文献   

10.
Gmez Alvarez E. 《Talanta》2007,72(5):1757-1766
The implementation of an experimental set-up for sampling, and characterisation of parameters related to absorptive sampling solid phase microextraction (SPME) in the EUPHORE photoreactor is described. Toluene was taken as probe compound. Optimisation of the sampling and calibration curves are presented. Equilibrium was achieved in just 30 s due to the good agitation in the chambers and the LOD was 0.24 ppbV. The precision was ±0.02 expressed as relative standard deviation (n = 9). The inter-fibre reproducibility was ±0.03 expressed as relative standard deviation. The effect of the temperature and the sun radiation on absorption in the fibre is also studied using a relative method to calculate the ratio K/K0 (ratio of absorption constants at two different times during the experiment at which temperature and radiation conditions experimented important variations) calculated through known parameters, avoiding in this way the need for external calibrations in the calculation of K. The results showed a difficult to predict dependence of absorption over the combination of temperature and sun radiation and the need to develop sampling systems with absorptive SPME in which sun radiation has no influence. The stability in different conditions of compounds absorbed in the fibre was also subject to study. At room temperature half of the compound absorbed is expected to desorb in 1.21 h. Conversely, when fibres were kept at low temperatures (−86 °C) after 21 days, desorption was negligible.  相似文献   

11.
Stark widths of 34 spectral lines of Pb I have been measured in a Laser-Induced-Plasma (LIP). The optical emission spectroscopy from a LIP generated by a 10 640 Å radiation, with an irradiance of 1.4 × 1010 W cm− 2 on a Sn–Pb target in an atmosphere of argon was analyzed between 1900 and 7000 Å. The Local Thermodynamic Equilibrium (LTE) conditions and plasma homogeneity have been checked. The 34 spectral lines measured in this paper correspond to the transitions n(n = 7, 8)s→6p2, n(n = 6, 7)d→6p2. The population levels distribution and the corresponding temperatures were obtained using Boltzmann plots. The plasma electron densities were determined using well-known Stark broadening parameters of spectral lines. Special attention was dedicated to the possible self-absorption of the different transitions. Stark broadening parameters of the spectral lines were measured at 2.5 µs after each laser light pulse, where the electron temperature was close to 11 200 K and the electron density to 1016 cm− 3. The experimental results obtained have been compared with the experimental values given by other authors.  相似文献   

12.
With a hydrothermal technique, a layered titanium phosphate with the formula Ti2(H2PO4)(HPO4)(PO4)2 · 0.5C6N2H16 (denoted TP-J2) has been prepared by treating the Ti/H3PO4/H2O/1-methylpiperazine system directly. The as-synthesized products were characterized by powder X-ray diffraction, CP-MAS solid-state 31P NMR spectroscopy, thermogravimetric and differential thermal analyses (TG-DTA). The structure was solved by single-crystal X-ray diffraction analysis and it presents an extended γ-phase intercalated with organic amine. Crystal data: triclinic, , a = 8.106 (2) Å, b = 8.197 (2) Å, c = 11.658 (2) Å.  = 78.32 (3)°, β = 80.85 (3)°, γ = 77.90 (3)°, Z = 2. Additionally, the intercalation behavior of TP-J2 with n-alkyl monoamine (n = 2, 3, 4, 6, 8, 10 and 12) was investigated. Owing to the strong brønsted base, N,N′-dimethylpiperazine, resides in the interlayer, it presented unusual features of TP-J2 in contrast with that of γ-Tip.  相似文献   

13.
For a nematic polymethacrylate side chain liquid crystalline polymer, g 154 N 298 I (°C), the solidification-induced band texture has been observed aligned along the disclination under a polarizing optical microscope, when the specimen was quenched from 280°C to room temperature. The decoration technique of solidification-induced band texture, which is usually reported for main chain liquid crystalline polymers, was then introduced to reveal the director field pattern along a disclination for this side chain liquid crystalline polymer. It was found by infra-red dichroism measurements that the director orientation is parallel with the direction of the band. On this basis, disclinations with strength s=±1/2 and s=±1 were mapped according to the corresponding pattern of solidification-induced band texture. In addition, two types of inversion wall, loop-like and splay-type walls, were also found to be decorated by the solidification-induced band texture.  相似文献   

14.
Evaluations on the influence of environmental variabilities on the red fluorescence component of the Sunna Model γ photo-fluorescent dosimeterTM have previously been reported. This present paper describes the environmental effects on the response of the green fluorescence component of the same dosimeter, which is manufactured using the injection molding technique. The results presented include temperature, relative humidity, and light influences both during and after irradiation. The green fluorescence signal shows a significant dependence on irradiation temperature below room temperature at 1%/°C. Above room temperature (approximately 24–60°C), the irradiation temperature effect varies from −0.1%/°C to 1.0%/°C, depending on the absorbed dose level. For facilities with irradiation temperatures between 30°C and 60°C and absorbed dose levels above 10 kGy, irradiation temperature effects are minimal. Light-effects results indicate that the dosimeter is influenced by ultraviolet and blue wavelengths during irradiation as well as during the post-irradiation stabilization period (approximately 22 h), requiring the use of light-tight packaging. Results also show that the dosimeter exhibits negligible effects from ambient moisture during and after irradiation when in the range of 33–95% relative humidity.  相似文献   

15.
Proton NMR spectra at 300 MHz for dehydrated and hydrated thallus of Cladonia mitis Sandst. [=C. arbuscula (Wallr.) Flot ssp. Mitis (Sandst.) Ruoss], Himantormia lugubris (Hue) Lamb and Usnea aurantiaco-atra (Jacq.) Bory were recorded. The temperature was decreased from room temperature down to −45 °C. Pulse length was set to π/2=8.3 μs, which allowed the observation of tightly bound and loosely bound/or free water fraction, whereas the signal from solid matrix of thallus was reduced. In hydrated thallus a narrow Lorentzian line coming from loosely bound/free water fraction was recorded. For the temperature range between −5 and −20 °C a discontinuous increase in line halfwidths, accompanied by a decrease in area under the peak, was observed. This was attributed to the cooperative freezing of bulk water present in lichen thallus. In dehydrated thallus the NMR line consists of two components: a narrow, Lorentzian one (coming from loosely bound/free water fraction) and a broad line (from water tightly bound in lichen thallus). The overall area under peak remains unchanged down to −5 °C, and then between −5 and −20 °C it continuously decreases due to non-cooperative water immobilisation. As the temperature is decreased, for temperatures above −5 °C, the contribution made by the broad line component increases at the expense of the narrow line component. The mechanism of loosely-to-tightly bound water transfer is, at least partially, responsible for the freeze-protection of thallus in the lichen species investigated. No significant differences between the freeze protecting loosely-to-tightly bound water transfer mechanism of Antarctic lichens and that of cosmopolitan lichens was noticed.  相似文献   

16.
A new series of liquid crystalline styrene-based monomers is described. These monomers are prepared by the DCC-mediated esterification reaction between 4-[11-(4-vinylphenoxy)undecyloxy]benzoic acid and a range of phenols chosen due to their proven utility in the synthesis of liquid crystals. Most members of the series display thermally stable (enantiotropic) nematic phases, although a few give only monotropic nematic phases. By incorporating the (S)-2-methylbutyl side chain, monomers that exhibit the chiral nematic phase can be obtained. Predictably, monomers derived from phenols containing an additional ring as substituent (e.g. 4-cyano-4'-hydroxybiphenyl) display relatively high transition temperatures. In contrast, monomers derived from simple 4-n-alkylphenols possess a nematic phase, which is accessible at moderate temperatures. In addition, a eutectic mixture derived from these monomers has a melting point only just above room temperature, which is an advantage for the fabrication of robust films via the in situ photopolymerization process. Standard free radical polymerization of a number of these monomers provides side chain liquid crystal polymers, SCLCPs, with mesophases that are stable over a wide temperature range. For a homologous series of SCLCPs containing a terminal n-alkyl chain on the mesogenic group, an unexpected but distinct odd-even effect is observed.  相似文献   

17.
By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 °C in a temperature range of transparent sol below 30 °C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration Wp > 3.5% (w/v), corresponding to opaque gel above 30 °C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 °C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.  相似文献   

18.
For a small volume (of about 10−6 cm3) of NaCl and other electrolyte solutions (C = 0.1 and 1 M) in thin (r = 5/10 μm) single quartz capillaries, dependencies of the column length l of frozen solutions on the temperature t were measured using comparator IZA-2 in a thermostated chamber. At temperatures range t > −4 °C (for C = 0.1 M) and t > −8 °C (for C = 1 M) the l(t) dependencies are reversible and therefore correspond to establishment of an equilibrium between ice-1 and the solution.

From the constants mass condition of the dissolved salt in a frozen column, the l(t) expression was derived, which includes thermodynamic relation between solution concentration in an equilibrium with ice, Cs, and the temperature t for bulk systems. Deviations from the data known for bulk solutions were observed in thin capillaries when temperature t decreased to −3 °C (for 0.1 M NaCl) and to −6 °C for 1 M NaCl solution.

This effect may be a result of strong adhesion of the ice column to capillary walls. In this case, some internal stresses arise in frozen solution resulting in a deviation from thermodynamic equilibrium conditions for bulk systems. When approaching the temperature of ice melting, adhesion forces decrease due to formation of a thin non-freezing water interlayer on the capillary wall. In this temperature range the experimental data are in agreement with the predictions for bulk systems. It was supposed that the observed deviation in thin capillaries may be caused by formation of an amorphous ice phase with higher density as compared with the ice-1 during rapid freezing, or by an effect of ice microlenses formation. Both effects will result in a deviation from the phase diagram corresponding to a bulk solution.  相似文献   


19.
Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex situ studies carried out by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in situ time-resolved high-temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 °C, 550 °C and 600 °C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500 °C, 550 °C and 600 °C, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. Indeed, the cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 kJ/mol and 185.6 kJ/mol and in excellent agreement with the literature values (183–239.5 kJ/mol). Finally, the in situ annealing of the 15.6 μm thick composite Pd/Ag/PSS membrane at 550 °C in hydrogen atmosphere indicated that the Pd/Ag alloy phase formation was not complete even after 500 h. According to the Avrami model, the increase in the hydrogen permeance from 7.1 m3/m2 h atm0.5 to 21.3 m3/m2 h atm0.5 at 550 °C over a period of 500 h corresponded to an 83% Pd/Ag alloy phase formation.  相似文献   

20.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号