首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
锂离子电池LiMn2O4正极材料的高温改性;锂离子电池;正极材料;尖晶石;LiMn2O4;包覆  相似文献   

2.
用固相反应合成了LiCoO2掺杂改性的LiMn2O4锂离子电池正极材料,优化了LiMn2O4的改性路径及制备条件.利用SEM、XRD对产物的结构进行了表征,并测试了产物的电化学性能.结果表明:所得产物均具有尖晶石型LiMn2O4结构.LiCoO2的掺入增加了尖晶石结构的稳定性,改善了尖晶石型LiMn2O4的充放电循环性能.  相似文献   

3.
尖晶石型LiMn2O4电池材料的元素掺杂   总被引:4,自引:0,他引:4  
尖晶石型LiMn2O4正极材料因资源丰富、无毒、安全及制备简单、技术较成熟等优点而成为最具竞争力的新一代商用锂离子二次电池的正极材料之一.由于LiMn2O4的循环稳定性、高温(>55℃)稳定性和大电流放电等因素限制了推广应用.本文从材料的结构组成对锂离子嵌脱过程的作用机理,论述了元素掺杂对尖晶石型LiMn2O4正极材料电化学特性的影响,指出了元素掺杂本体改性锰酸锂正极材料的方法和特点.  相似文献   

4.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

5.
柠檬酸溶解废锂离子电池正极材料的研究   总被引:1,自引:0,他引:1  
探求废锂离子电池正极材料LiMn2O4在柠檬酸溶液中的溶解条件,为废旧电池的进一步回收利用奠定基础。采用单因素与正交实验相结合的方法,对废锂离子电池正极材料LiMn2O4在柠檬酸溶液中的溶解条件进行研究,结果表明,废锂离子电池正极材料LiMn2O4在柠檬酸溶液中适宜的溶解条件为:柠檬酸浓度1.0mol.L-1、溶解温度45℃、H2O2加入量5.0%、料液比60g.L-1,在此条件下正极材料LiMn2O4在柠檬酸溶液中的溶解率达到99.56%。对柠檬酸溶解废锂离子电池正极材料LiMn2O4的机理进行了探讨,认为在加入H2O2之前,尖晶石LiMn2O4中的Mn3+发生歧化反应生成Mn2+以及MnO2,而Mn4+在溶液中水解生成MnO2。MnO2与柠檬酸发生氧化还原反应生成丙酮二羧酸及Mn2+。加入H2O2之后,H2O2作为还原剂能够将剩余的MnO2全部还原为Mn2+,使正极材料LiMn2O4在柠檬酸溶液中的溶解率得以提高。  相似文献   

6.
LiCoO2对LiMn2O4改性过程的研究   总被引:4,自引:0,他引:4  
在LiCoO2、LiMn2O4、LiNiO2这三种锂离子电池正极材料中,尖晶石LiMn2O4由于具有价廉、对环境友好、使用安全的显著优点,被普遍认为是最有希望的新型正极材料。但该材料在高温下较快的容量衰减制约了其规模应用[1~3]。为改善LiMn2O4的高温性能,各国学者普遍采用掺杂法,即在制备L  相似文献   

7.
锂锰尖晶石LiMn2O4被认为是当前最有前途的锂离子电池的正极材料之一[1];特别在用于动力锂离子电池方面.但是LiMn2O4在充-放电循环过程中会发生严重的容量衰减;而产生容量衰减的主要原因是其结构的不稳定性[2-3]、锰的溶解[4]和John-Teller效应[5].  相似文献   

8.
采用喷雾热解的方法合成了单相的尖晶石LiMn2O4的颗粒,结构研究结果表明用这种喷雾造粒的方法可以得到颗粒细小匀的LiMn2O4粉体,其组装的电池具有良好的电化学容量和循环性能,表明这是一种可推广的合成锂离子电池正极材料LiMn2O4粉体的方法。  相似文献   

9.
采用喷雾热解的方法合成了单相的尖晶石LiMn2O4的颗粒,结构研究结果表明用这种喷雾造粒的方法可以得到颗粒细小匀的LiMn2O4粉体,其组装的电池具有良好的电化学容量和循环性能,表明这是一种可推广的合成锂离子电池正极材料LiMn2O4粉体的方法。  相似文献   

10.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

11.
詹晖  周运鸿 《化学学报》2002,60(5):775-783
用一种新型的半固相法合成得到LiCo_xMn_(2-x)O_4材料,通过X射线衍射技术 和充放电实验对材料的结构及循环性能进行了研究。与传统的固相合成法相比,这 种半固相法显示了产物颗粒尺寸均匀,电化学性能良好的特点。通过对结构,组成 与电化学性能关系的探讨,对不同半固相法合成路线的选择及适当的优化,可得到 电化学性能良好的掺钴尖晶石材料,其中LiCo_(0.016)Mn_(1.984)O_4在室温下的 初始容量为118 mA·h/g,循环25周后,容量仍能保持在113 mA·h/g左右。通过这 种新型合成方法得到的掺钴尖晶石材料,在高温下也表现出了令人满意的充入电循 环性能。  相似文献   

12.
采用一种特殊微波合成法,流变相辅助微波合成法,制备了结晶度好、纯度高的尖晶石相的锂离子电池正极材料LiAl_(0.03)Mn_(1.97)O_4。对其进行了XRD分析和SEM研究,并就结构、形貌与传统固相法制备的LiMn_2O_4、LiAl_(0.03)Mn_(1.97)O_4进行了比较。采用这种漉变相辅助微波合成法制备的LiAl_(0.03)Mn_(1.97)O_4具有优良的电化学性能,电化学性能测试表明,这种材料具有比较高的首次放电容量(115mAh/g)以及良好的可逆性、优异的循环性能,25次循环结束比容量几乎不变,保持在115mAh/g左右,衰减性得到很好的改善。  相似文献   

13.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

14.
粟智  叶世海  王永龙 《化学学报》2009,67(21):2413-2420
用水热法合成了锂离子电池正极材料正交结构LiMnO2材料, 并对其进行S2-、大尺寸阳离子(Cu2+, Co3+, Ti4+)以及硫-金属离子复合掺杂改性. 用X射线衍射(XRD)、X光电子能谱分析(XPS)、透射电子显微镜(TEM)、恒电流充放电、交流阻抗谱(EIS)等测试技术进行表征. 实验结果表明: 当掺入离子的含量较低时, 得到的产物能保持完整的正交结构, 并表现出较好的电化学性能. S2-和非Jahn-Teller效应大尺寸阳离子的掺入使材料的循环稳定性能大幅度提高, 而这种提高是源于这些离子对LiMnO2结构的稳定作用. 电极材料Li1.02Mn0.988Ti0.012O1.989S0.011显示了最优的电化学性能, 在50 mA•g-1放电速率下, 其初始放电容量为142.6 mAh•g-1, 60次循环后放电容量为213.4 mAh•g-1. 硫-金属阳离子复合掺杂, 综合了大尺寸阳离子可以提高材料中Li+的扩散能力和S2-掺杂抑制Jahn-Teller畸变两方面优势, 使层状结构LiMnO2正极材料既保持了较高的容量又获得良好的循环性能.  相似文献   

15.
LiNi_(0.85)Co_(0.15)O_2合成和结构与电化学性能关系   总被引:4,自引:0,他引:4  
朱先军  詹晖  周运鸿 《化学学报》2002,60(10):1742-1746
介绍了一种以LiOH·H_2O, Co_2O_3和Ni_2O_3为原料通过高温法合成LiNi_(0. 85)Co_(0.15)O_2的方法,通过XRD和电化学测试对制得的产物进行了表征,讨论了 合成条件对产物结构的影响以及结构与电化学性能之间的关系。实验结果表明,合 成反应温度、Li/Ni/Co摩尔比对LiNi_(0.85)Co_(0.15)O_2的结构和电化学性能有 较大的影响,合成出具有电化学活性的LiNi_(0.85)Co_(0.15)O_2需要严格控制反 应条件。本文合成出具有高度结晶层状结构的LiNi_(0.85)Co_(0.15)O_2, Rietveld精化结果表明a = 0.2874 nm, c = 1.4229 nm,最大晶胞体积V = 0. 10180 nm~3,其首次放电容量可达197 mA·h/g, 15次循环后,其放电容量仍在 180 mA·h/g以上。  相似文献   

16.
新型质子酸掺杂聚苯胺的合成及其电化学电容行为   总被引:5,自引:0,他引:5  
用化学氧化聚合法制得了草酸掺杂聚苯胺(H2C2O4-PANI)和柠檬酸掺杂聚苯胺(C6H8O7-PANI),并与盐酸掺杂聚苯胺(HCl-PANI)做了对比研究.用红外光谱(FT-IR)、X射线衍射(XRD)和透射电镜(TEM)对掺杂聚苯胺的结构和形貌进行了表征.用循环伏安,恒流充放电和交流阻抗测试对材料在1 mol/L HCl溶液中的电化学电容行为进行了研究.结果表明:3种酸掺杂的聚苯胺具有不同的空间结构,电化学性能也有差异.与盐酸和柠檬酸掺杂的聚苯胺相比,草酸掺杂制备的聚苯胺表现出更优良的电化学电容行为,单电极比电容可达670 F/g.  相似文献   

17.
采用水热反应的方法,以LiOH·H_2O,MnOOH和Sc_2O_3为原料,合成了一系列Sc~(3+)掺杂的锂离子电池正极材料LiSc_xMn_(1-x)O_2(x=0.01,0.02,0.03,0.05).利用X射线衍射和X光电子能谱测试研究了材料的结构和元素的化学状态.掺杂后的LiSc_xMn_(1-x)O_2材料仍保持正交相结构.电化学测试结果表明,掺杂后材料表现出较好的电化学性能,Sc~(3+)的掺入使材料的循环稳定性能大幅度提高,掺杂量为2%时LiMn_(0.981)Sc_(0.019)O_2材料的初次放电容量为140.5 mAh·g~(-1),60次循环后放电容量高达169.6 mAJl·g-.,远高于未掺杂的LiMnO_2材料的放电容量107.7 mAh·g~(-1).这种提高源于Sc~(3+)的加入,很好地起到了稳定晶体结构、有效抑制Jahn-Teller效应的作用.电化学阻抗测试结果表明,Sc~(3+)的掺人能改善材料的导电性能.  相似文献   

18.
层状结构LiMn_(1-x)Cr_xO_2材料合成电化学性能研究   总被引:1,自引:1,他引:0  
肖婕  詹晖  周运鸿 《电化学》2004,10(3):324-329
应用流变相法合成掺Cr层状结构锂锰氧化物.XRD分析显示,掺Cr后的锂锰氧化物为单斜晶系(Monoclinic)的层状化合物,而未掺Cr的产物结构则属斜方晶系(Orthorhombic).TEM观测表明,以上两种产物的颗粒都非常细小,直径在60300nm之间,呈球形,且分布均匀.作为锂离子电池正极材料,掺Cr产物的初始容量(>180mAh·g-1)远大于未掺杂的,室温下以50mA·g-1的速率充放40周后仍可保持94%的容量.电化学测试表明,掺Cr的锂锰氧化物能抑制层状结构进一步向尖晶石相转变,从而使其循环能够稳定在2.04.4V范围内.  相似文献   

19.
采用改进的溶胶-凝胶法合成了Li2Fe1-xMnxSiO4/C(x=0, 1/4, 1/3, 1/2)复合材料. 用X射线衍射(XRD)、拉曼光谱和扫描电子显微镜(SEM)对材料的结构和形貌进行了表征. 通过恒流充放电对材料的电化学性能进行了测试. 结果表明, 在室温、1.5~4.8 V电压范围内, 于C/16倍率下进行充放电测试时, Li2Fe3/4Mn1/4SiO4/C具有较高的首次放电比容量(201.0 mA·h/g), 具有良好的电化学性能.  相似文献   

20.
Lu  Yong  Zhang  Qiu  Chen  Jun 《中国科学:化学(英文版)》2019,62(5):533-548
Lithium-ion batteries(LIBs) have been widely used in many fields such as portable electronics and electric vehicles since their successful commercialization in the 1990 s. However, the electrochemical performance of current commercial LIBs still needs to be further improved to meet the continuously increasing demands for energy storage applications. Recently, tremendous research efforts have been made in developing next-generation LIBs with enhanced electrochemical performance. In this review, we mainly focus on the recent progress of LIBs with high electrochemical performance from four aspects, including cathode materials, anode materials, electrolyte, and separators. We discuss not only the commercial electrode materials(LiCoO_2,LiFePO_4, LiMn_2O_4, LiNi_xMn_yCo_zO_2, LiNi_xCo_yAl_zO_2, and graphite) but also other promising next-generation materials such as Li-, Mn-rich layered oxides, organic cathode materials, Si, and Li metal. For each type of materials, we highlight their problems and corresponding strategies to enhance their electrochemical performance. Nowadays, one of the key challenges to construct high-performance LIBs is how to develop cathode materials with high capacity and working voltage. This review provides an overview and future perspectives to develop next-generation LIBs with high electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号