首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Transparent conducting ZnO and Al doped ZnO thin films were deposited on glass substrate by ultrasonic spray method. The thin films with concentration of 0.1 M were deposited at 350 °C with 2 min of deposition time. The effects of ethanol and methanol solution before and after doping on the structural, optical and electrical properties were examined. The DRX analyses indicated that ZnO films have nanocrystalline nature and hexagonal wurtzite structure with (1 0 0) and (0 0 2) preferential orientation corresponding to ZnO films resulting from methanol and ethanol solution, respectively. The crystallinity of the thin films improved with methanol solution after doping to (0 0 2) oriented. All films exhibit an average optical transparency about 90%, in the visible range. The band gaps values of ZnO thin films are increased after doping from 3.10 to 3.26 eV and 3.27 to 3.30 eV upon Al doping obtained by ethanol and methanol solution, respectively. The electrical conductivity increase from 7.5 to 15.2 (Ω cm)−1 of undoped to Al doped ZnO thin films prepared by using ethanol solution. However, for the methanol solution; the electrical conductivity of the film is stabilized after doping.  相似文献   

2.
Cobalt doped zinc oxide (ZnO:Co) thin films were deposited on glass substrates by ultrasonic spray technique decomposition of Zinc acetate dihydrate and cobalt acetate tetrahydrate in an ethanol solution with film thickness. All films are polycrystalline with a hexagonal wurtzite-type structure with a preferential orientation according to the direction (0 0 2), with the maximum crystallite size was found of 59.42 nm at 569 nm. The average transmittance of all films is about 65–95% measured by UV–vis analyzer. The band gap energy increased from 3.08 to 3.32 eV with increasing the film thickness from 192 to 569 nm. The increase of the electrical conductivity with increases in the film thickness to maximum value of 9.27 (Ω cm)−1 can be explained by the increase in carrier concentration and displacement of the electrons of the films. The correlation between the band gap and crystal structure suggests that the band gap energy of Co doped ZnO is influenced by the crystallite size and the mean strain.  相似文献   

3.
ZnO thin films were prepared by thermal oxidation of Zn metal at 400 °C for 30 and 60 min. The XRD results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The sensors had a maximum response to H2 at 400 °C and showed stable behavior for detecting H2 gases in the range of 40 to 160 ppm. The film oxidized for 60 min in oxygen flow exhibited higher response than that of the 30 min oxidation which was approximately 4000 for 160 ppm H2 gas concentration. The sensing mechanism was modeled according to the oxygen-vacancy model.  相似文献   

4.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

5.
Pure and Cobalt doped zinc oxide were deposited on glass substrate by Ultrasonic spray method. Zinc acetate dehydrate, Cobalt chloride, 4-methoxyethanol and monoethanolamine were used as a starting materials, dopant source, solvent and stabilizer, respectively. The ZnO samples and ZnO:Co with Cobalt concentration of 2 wt.% were deposited at 300, 350 and 400 °C. The effects of substrate temperature and presence of Co as doping element on the structural, electrical and optical properties were examined. Both pure and Co doped ZnO samples are (0 0 2) preferentially oriented. The X-ray diffraction results indicate that the samples have polycrystalline nature and hexagonal wurtzite structure with the maximum average crystallite size of ZnO and ZnO:Co were 33.28 and 55.46 nm. An increase in the substrate temperature and presence doping the crystallinity of the thin films increased. The optical transmittance spectra showed transmittance higher than 80% within the visible wavelength region. The band gap energy of the thin films increased after doping from 3.25 to 3.36 eV at 350 °C.  相似文献   

6.
曹慧波  何伦华  王芳卫 《中国物理》2005,14(9):1892-1895
A new single-molecule magnet [Mn11Fe1O12 (CH3COO)16(H2O)4]?2CH3COOH?4H2O (Mn11Fe1) has been synthesized.The structure has been studied by the single crystal x-ray diffraction. The difference of Jahn--Teller distortion between Fe3+ and Mn3+ ion reveals that Fe3+ ion substitutes for Mn3+ ion on the Mn(3) sites in the Mn12 skeleton. The temperature dependence of the magnetization gives a blocking temperature TB=1.9K for Mn11Fe1. Based on the magnetization process analysis of the crystal at T=2K, we suggest that Mn11Fe1 has the ground state with a total spin S= 11/2.  相似文献   

7.
CuAlO2 thin film was successfully prepared by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure in air above 1000 °C. The film was mostly with single crystalline structure as verified by X-ray diffraction methods. We found that crystal quality and electrical conductivity of the films were affected by the cooling rate after annealing. The highest conductivity obtained in this work was 0.57 S/cm. Optical gap of this film was determined to be 3.75 eV.  相似文献   

8.
Nontoxic cobalt acetate tetrahydrate was used as a precursor to prepare cobalt nanoparticles of 8–200 nm in average diameter by thermal decomposition. The different combinations of trioctylphosphine, oleylamine and oleic acid were added as surfactants to control the particle size. These combinations resulted in the particles with saturation magnetization and coercive force ranging from 55.0 to 100.1 emu/g and from 0 to 459.3 Oe, respectively.  相似文献   

9.
The magnetic structure of manganous acetate Mn(CH3COO)2, 4H2O has been solved by neutron diffraction. Manganous acetate crystallizes in the space group P21c with Z = 6. Manganese atoms (in position 2a and 4e) are located in (100) planes. Below TN = 3.18 K this compound is antiferromagnetic in a zero applied field with the k vector [12 00]. The plane (100) is ferromagnetic. The magnetic group is P2a21c.  相似文献   

10.
CH4/H2-based discharges are attractive for dry etching of single crystal ZnO because of their non-corrosive nature. We show that substitution of C2H6 for CH4 increases the ZnO etch rate by approximately a factor of 2 both with and without any inert gas additive. The C2H6/H2/Ar mixture provides a strong enhancement over pure Ar sputtering, in sharp contrast to the case of CH4/H2/Ar. The threshold ion energy for initiating etching is 42.4 eV for C2H6/H2/Ar and 59.8 eV for CH4/H2/Ar. The etched surface morphologies were smooth, independent of the chemistry and the Zn/O ratio in the near-surface region was unchanged within experimental error after etching with both chemistries. The plasma etching improved the band-edge photoluminescence intensity and suppressed the deep level emission from the bulk ZnO under our conditions, due possibly to removal of surface contamination layer.  相似文献   

11.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

12.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

13.
The thermal evolution process of IrO2-SnO2/Ti mixed oxide thin films of varying noble metal content has been investigated under in situ conditions by thermogravimetry-mass spectrometry, Fourier transform infrared emission spectroscopy and cyclic voltammetry. The gel-like films prepared from aqueous solutions of the precursor salts Sn(OH)2(CH3COO)2−xClx and H2IrCl6 on titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C.The thermal decomposition reactions practically take place in two separate temperature ranges from ambient to about 250 °C and between 300 and 600 °C. In the low temperature range the liberation of solution components and - to a limited extent - an oxidative cracking reaction of the acetate ligand takes place catalyzed by the noble metal. In the high temperature range the evolution of chlorine as well as the decomposition of surface species formed (carbonyls, carboxylates, carbonates) can be observed. The acetate ligand shows extreme high stability and is decomposed in the 400-550 °C range, only.Since the formation and decomposition of the organic surface species can significantly influence the morphology (and thus the electrochemical properties) of the films, the complete understanding of the film evolution process is indispensable to optimize the experimental conditions of electrode preparation.  相似文献   

14.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

15.
Transparent conductive Co-doped ZnO thin films were deposited by ultrasonic spray technique. Conditions of preparation have been optimized to get good quality. A set of cobalt (Co)-doped ZnO (between 0 and 3 wt%) thin films were grown on glass substrate at 350 °C. The thin films were annealed at 500 °C for improvement of the physical properties. Nanocrystalline films with hexagonal wurtzite structure and a strong (0 0 2) preferred orientation were obtained. The maximum value of grain size G = 63.99 nm is attained with undoped ZnO film. The optical transmissions spectra showed that both the undoped and doped ZnO films have transparency within the visible wavelength region. The band gap energy decreased after doping from 3.367 to 3.319 eV when Co concentration increased from 0 to 2 wt% with slight increase of electrical conductivity of the films from 7.71 to 8.33 (Ω cm)−1. The best estimated structure, optical and electrical results are achieved in Co-doped ZnO film with 2 wt%.  相似文献   

16.
The results of molecular beam Fourier transform microwave (FTMW) investigations of the van der Waals complexes of dimethyl ether with 1,1-difluoroethene/trifluoroethene are reported. The rotational parameters of the complexes have been interpreted in terms of a Cs geometry with the two methyl groups lying out of the σv symmetry plane of complexes. The complexes are bound with three hydrogen bonds of which one is the stronger O?HC type and two are the weaker F?HC types. Some additional information on the structure and the hydrogen bond has been obtained from ab initio calculations.  相似文献   

17.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

18.
The electronic absorption spectra of [(CH3)3NH] MnCl3.2H2O single crystals are reported in the 15,000–45,000 cm-1 region. In addition to the normally studied sextet → quartet transitions, special attention has been paid to the sextet → doublet transitions. Crystal field parameters evaluated (including the Trees' correction factor) to fit the observed spectra are B = 800, C = 2900, Dq = 680, and α = 76 cm-1.  相似文献   

19.
The effect of inert gas additive (He, Ar, Xe) to CH4/H2 discharges for dry etching of single crystal ZnO was examined. The etch rates were higher with Ar or Xe addition, compared to He but in all cases the CH4/H2-based mixtures showed little or no enhancement over pure physical sputtering under the same conditions. The etched surface morphologies were smooth, independent of the inert gas additive species and the Zn/O ratio in the near-surface region decreases as the mass number of the additive species increases, suggesting preferential sputtering of O. The plasma etching improved the band-edge photoluminescence intensity from the ZnO for the range of ion energies used here (290-355 eV), due possibly to removal of surface contamination layer.  相似文献   

20.
Luminescence spectra of NaUO2(CH3COO)3 single crystals at 4.2 K have been investigated by means of site selective excitation technique, circularly polarized luminescence and time-resolved luminescence spectroscopy. It has been found that the splittings in the pure electronic and their vibronic transition lines are ascribed to the transitions from two different emitting sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号