首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new high negative dispersion photonic crystal fiber is proposed. It has double-core structure. The inner core has a circle germanium-doped region. The outer core is formed by removing the 3rd ring air-holes around the core. There are two ring air-holes between the two cores, Diameter of the 1st ring air holes is bigger than that of the 2nd ring air-holes, this can make mode coupling between inner mode and outer mode and showed that the high negative PCF is the result of this structure characteristics. There are honeycomb photonic lattice in the PCF's cladding. The influence of the structure parameters deviated from the design those on the chromatic dispersion are evaluated. When the structure parameters Λ=1.50 μm, dcore=2.10 μm, d1=0.90 μm, d2=0.44 μm and d3=1.04 μm, the dispersion coefficient D is −1320 ps/(nm·km) at 1550 nm. This is a new kind of chromatic dispersion compensation PCF.  相似文献   

2.
An endlessly single mode highly polarization maintaining nonlinear microstructure fiber at telecommunication window is reported via full-vector finite element method. By taking three ring hexagonal PCF with suitable fiber parameter such as air hole diameter in cladding region d = 0.8 μm, pitch 2.3 μm and introducing four symmetrical large air holes near core region d′ = 2 μm, single mode (Veff ≤ π), small effective mode area 2.7 μm2, nonlinear co-efficient 44.39 W−1 km−1, high phase birefringence of the order of 10−3 and group birefringence of the order of 10−4 with beat length 0.3 μm at wavelength 1.55 μm are achieved.  相似文献   

3.
In this paper, we report a chalcogenide As2Se3 glass photonic crystal fiber (PCF) for dispersion compensating application. We have used the improved fully vectorial effective index method (IFVEIM) for comparing the dispersion properties (negative and zero dispersion) and effective area in hexagonal and square lattice of As2Se3 glass PCF using different wavelength windows. It has been demonstrated that due to their negative dispersion parameter and negative dispersion slope in wavelength range 1.2-2.5 μm, both lattice structures of As2Se3 glass PCFs, with pitch (Λ = 2 μm), can be used as dispersion compensating fibers. Further, design parameters have been obtained to achieve zero dispersion in these fibers. It is also shown that As2Se3 glass PCF provides much higher negative dispersion compared to silica PCF of the same structure, in wavelength range 1.25-1.6 μm and hence such PCF have high potential to be used as a dispersion compensating fiber in optical communication systems.  相似文献   

4.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

5.
A type of high birefringence dual-core photonic crystal fibers (DC-PCFs) with a central row of elliptical air holes have been proposed. The transverse electric field vector distributions of the two modes are evaluated, the birefringence or coupling length with the different parameters is numerically analyzed based on finite-element method. The numerical results show values for the birefringence of 8.247 × 10−3 (for wavelength, λ = 1.5 μm and lattice length, Λ = 1.3 μm), and for the coupling lengths about 3.1 mm and 2.6 mm (λ = 1.5 μm and Λ = 1.5 μm) to modes of x and y polarized, respectively. With the increasing of the air-filling fraction in proposed DC-PCF, the coupling length becomes longer and the birefringence becomes higher.  相似文献   

6.
This work studies the heating process for deep submicron-patterned TbFe films to be used in a thermally assisted perpendicular magnetic random access memory's writing scheme. The dependence of the heating power density with the current pulse width required for the successful writing was measured in the investigated range of 5-100 ns. In the case of long current pulse, the heat diffuses dominantly into substrate, which resulted in large variation of the required power/energy density with the patterned size. The power/energy densities required for writing increased as the junction area is reduced. While for the short current pulse width, the power/energy densities became rather independent on the size. The required power density for writing 0.38×0.28 μm2 patterned films using the pulse width of 5 ns is experimentally estimated to be around P=4.7 mW/μm2, corresponding to the energy density of E=23 pJ/μm2, under an external field of 100 Oe.  相似文献   

7.
Halime Demir  Sedat Ozsoy 《Optik》2012,123(8):739-743
In this study, large-solid-core photonic crystal fibers with fixed air-hole diameter d = 0.84 μm and with fixed pitch length Λ = 4.2 μm are investigated for different d/Λ ratios. The dispersions and the effective mode-areas are obtained and compared for both the structures. It is seen that the dispersion management is easier by using the fixed d structures, but for working around the same zero dispersion points in a large interval of d/Λ the fixed Λ structures are more available. The Aeff values larger than 100 μm2 are obtained with d/Λ smaller than 0.2 for both the two structures. Aeff increases rapidly with decreasing d/Λ to 0.1 and then reaches to Aeff value of 500 μm2 at the d/Λ = 0.1 for the fixed d structures. The single-mode regime for the two structures is also discussed.  相似文献   

8.
Both single-barrier magnetic tunnel junctions (SBMTJs) and double-barrier magnetic tunnel junctions (DBMTJs) with an amorphous hardcore structure of Co60Fe20B20/Al–O/Co60Fe20B20 were microfabricated. A high TMR ratio of 102.2% at 4.2 K was observed in the SBMTJs after annealing at 265 °C for 1 h. High TMR ratio of 56.2%, low junction resistance-area product RS of 4.6 kΩ μm2, small coercivity HC=25 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 500 mV at room temperature (RT) had been achieved in such Co–Fe–B SBMTJs. Whereas, high TMR ratio of 60% at RT and 89% at 30 K, low junction resistance-area product RS of 7.8 kΩ μm2 at RT and 8.3 kΩ μm2 at 30 K, low coercivity HC=8.5 Oe at RT and HC=14 Oe at 30 K, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 1150 mV at RT had been achieved in the Co–Fe–B DBMTJs. Temperature dependence of the TMR ratio, resistance, and coercivity from 4.2 K to RT, and applied voltage dependence of the TMR ratio and resistance at RT for such amorphous MTJs were also investigated.  相似文献   

9.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

10.
In this paper, we proposed a dual-enhanced core photonic crystal fiber (PCF) with high birefringence and ultra-high negative dispersion for dispersion compensation in a polarization maintained optical system. Using finite difference time domain (FDTD) method, we presented dispersion compensating PCF (DC-PCF) with negative dispersion between −1650 ps nm−1 km−1 and −2305 ps nm−1 km−1 in C-band and particularly −2108 ps nm−1 km−1 in λ = 1.55 μm wavelength. By this method, we can compensate dispersion in 124 km long span of a conventional single mode fiber (SMF) by 1 km-long of the DC-PCF at λ = 1.55 μm wavelength. Moreover, fundamental mode of the proposed PCF can induce birefringence about 3.5 × 10−3 at 1.55 μm wavelength.  相似文献   

11.
The electrodynamic method is used to measure the hysteresis losses of a dense assembly of magnetite nanoparticles with an average diameter D=25 nm in the frequency range f=10–150 kHz and for magnetic field amplitudes H0=100–300 Oe. It is found that the specific loss power is determined by a demagnetizing factor of a whole sample. It diminishes approximately 4.5 times when the sample aspect ratio decreases from L/d=11.4 to L/d≈1, where L and d are the sample length and diameter, respectively. For H0≤300 Oe the maximal specific loss power 120 W/g is obtained for the sample with L/d=11.4 at f=120 kHz. For comparison, the assembly specific absorption rate has been determined also by means of direct measurement of the temperature difference between the inner and outer surfaces of a flat cuvette containing magnetic nanoparticles. For both methods of measurement close values for the specific absorption rate are obtained for samples with similar demagnetizing factors.  相似文献   

12.
In this paper, we present and explore a new hybrid cladding design for improved birefringence and highly nonlinear photonic crystal fibers (PCFs) in a broad range of wavelength bands. The birefringence of the fundamental mode in such a PCF is numerically analyzed using the finite element method (FEM). It is demonstrated that it is possible to design a simple highly nonlinear hybrid PCF (HyPCF) with a nonlinear coefficient of the about 46 W−1 km−1 at a 1.55 μm wavelength. According to simulation, the highest modal birefringence and lowest confinement loss of our proposed structure at the excitation wavelength of λ = 1.55 μm can be achieved at a magnitude of 1.77 × 10−2 and of the order less than 102 dB/km with only five rings of air-holes in the fiber cladding.  相似文献   

13.
A novel highly birefringent photonic crystal fiber with small effective mode area is proposed. Four elliptical air-holes are designed in the internal layer of the fiber to cause the anisotropy, and the fiber has the property of highly birefringence and small effective mode area. The influences of elliptical air-holes on effective index, birefringence, effective mode area and nonlinear coefficient are analyzed by using full-vector finite element method (FEM). Simulation results show the birefringence can achieve the magnitude of 10−3 under the condition of d > 2.3 μm and a > 1.4 μm, which d and a are the distance and semimajor axis of elliptical air holes. By adjusting the parameters d and a, different effective mode area and nonlinear coefficient can be obtained, which demonstrates the flexibility of the proposed photonic crystal fiber.  相似文献   

14.
Considering the optical stability of solution, the sugar-solution is infused into the outer core ring of dual-concentric-core photonic crystal fiber (DCCPCF). The influences of structure parameters and solution concentration on the phase and loss matching are comprehensively analyzed. By choosing the appropriate outer core mode to completely couple with the inner core fundamental mode, the large negative dispersion PCF around 1.55 μm is designed, which has the dispersion value of − 39,500 ps/km/nm as well as bandwidth of 7.4 nm and effective mode area of 28.3 μm2. The designed PCF with hybrid cladding structure can effectively compensate the positive dispersion of conventional single mode fiber, and suppress the system perturbation caused by a series of nonlinear effects. Considering the mode field mismatching between the DCCPCF and the tapered fiber, the calculated connection loss around 1.55 μm is below 3 dB. In addition, the equivalent propagation constants of two leaky modes are deduced from the coupled-mode theory, and the complete mode coupling case can be well predicted by comparing the real and imaginary parts of propagation constants.  相似文献   

15.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

16.
Proposed in this paper is a simple square-lattice photonic crystal fiber (PCF) with nearly zero flattened dispersion (NZFD) over a wide wavelength span. We make a trade-off between the coupling efficiency and the effective mode area in order to obtain relatively low confinement loss and high nonlinearity. Via full-vector finite element method with hybrid edge/node elements, over 1137–1710 nm, the dispersion coefficient is 0.3 ± 0.3 ps/(km nm), the confinement loss is relatively low, in level of 10−7–10−4 dB/km and the effective mode area remains 5.88–6.59 μm2.  相似文献   

17.
Ni nanowire arrays with varying wire dimensions (diameter d, length l) and center-to-center distances dCC were synthesized by pulsed electrodeposition of Ni in porous Al templates. The magnetization-reversal behavior of the arrays was investigated by means of magnetometry for different angles θ between the wire axes and the applied magnetic field. The functional dependences of the characteristic parameters coercivity HC(θ) and reduced remanence mR/mS(θ) exhibit a strong dependence on the wire dimensions and the center-to-center distance. For instance, for nanowire arrays with d=40 nm, dCC=100 nm, and for θ=0°, the coercivity takes on a rather large value of μ0HC=85 mT and mR/mS≅94%; reducing dCC to 30 nm and d to 17 nm results in μ0HC=49 mT and mR/mS≅57%, an observation which suggests an increasing magnetostatic interwire interaction at increased (d/dCC)-ratio. The potential application of nanowires as the constituents of ferrofluids is discussed.  相似文献   

18.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

19.
An extruded elliptical hole photonic crystal fibers PCF with square air-core is proposed. By using a full vector finite-element method FV-FEM and anisotropic perfectly matched layers APML, the structure and optical properties of the proposed PCF are analyzed. Simulation results show that the birefringence of the proposed photonic crystal fiber can be up to the order of 10−2, and has a flattened dispersion from 1.20 μm to 1.80 μm. The proposed PCF may have important application in super-continuum SC generation, dispersion compensation, fiber-optic sensing systems and other aspects.  相似文献   

20.
A large mode area photonic crystal fiber (LMA PCF) with an effective area of 180 μm2 is used to generate a high energy, micro-joule range, flat, octave spanning supercontinuum (SC) extending from ~ 600 nm to ~ 1720 nm. A train of femtosecond pulses from a widely-tunable parametric amplifier pumped by a Ti:Sapphire regenerative amplifier system are coupled into a 20 cm length of LMA PCF generating a SC of 1.4 μJ energy. We present an experimental study of the high energy SC as a function of the input power and the pumping wavelength. The spectrum obtained at a pump wavelength of 1260 nm presents spectral flatness variation less than 12 dB over more than 1.1 octave bandwidth. The physical processes behind the SC formation are described in the normal and the anomalous dispersion regions. Our experimental results are successfully compared with the numerical solution of the nonlinear Schrödinger equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号