首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H2S ∼10−4 Torr). The H2S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH2)2] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 °C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H2S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.  相似文献   

2.
The II-VI compound semiconductor, ZnSe having wide band gap between 2.58 and 2.82 eV is a promising material for use in photovoltaic devices, blue light emitting diodes and laser diodes. Several methods have been used to prepare ZnSe thin films. We have deposited ZnSe films on ultra-clean glass substrate by sintering technique. The optical, structural and electrical properties of ZnSe thin films have been examined. The optical band gap of these films is studied using reflection spectra in wavelength range 325-600 nm and structure of these films is studied using XRD. The DC conductivity of the films was measured in vacuum by two-probe technique.Sintering is a very simple and viable method compared to other intensive methods. The results of the present investigation will be useful in characterizing the material ZnSe for its applications in photovoltaics.  相似文献   

3.
Highly efficient transparent Zn2SiO4:Mn2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn2SiO4:Mn2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn2SiO4: Mn2+ crystals.  相似文献   

4.
Se85Te10Bi5 films of different thicknesses ranging from 126 to 512 nm have been prepared. Energy-dispersive X-ray (EDX) spectroscopy technique showed that films are nearly stoichiometric. X-ray diffraction (XRD) measurements have showed that the Se85Te10Bi5 films were amorphous. Electrical conduction activation energy (ΔEσ) for the obtained films is found to be 0.662 eV independent of thickness in the investigated range. Investigation of the current voltage (I-V) characteristics in amorphous Se85Te10Bi5 films reveals that it is typical for a memory switch. The switching voltage Vth increases with the increase of the thickness and decreases exponentially with temperature in the range from 298 to 383 K. The switching voltage activation energy (ε) calculated from the temperature dependence of Vth is found to be 0.325 eV. The switching phenomenon in amorphous Se85Te10Bi5 films is explained according to an electrothermal model for the switching process. The optical constants, the refractive index (n) and the absorption index (k) have been determined from transmittance (T) and reflectance (R) of Se85Te10Bi5 films. Allowed non-direct transitions with an optical energy gap (Egopt) of 1.33 eV have been obtained. ΔEσ is almost half the obtained value of Egopt, which suggested band to band conduction as indicated by Davis and Mott.  相似文献   

5.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

6.
Composites are pragmatic choices for tailoring the material to have a desired property. Besides, such thin films have scopes to display superior optical, microstructural and morphological properties which are otherwise not possible to obtain from the pure component films. Vapor-phase-mixed binary composite Gd2O3/SiO2 thin film is one such interesting system where band gap as well as refractive index superiority is observed simultaneously under certain compositional mixings. Such and similar observations in composites cannot be explained by Moss empirical rule. Our systematic study on the microstructure of this composite system based on ellipsometry and scanning probe microscopy has satisfactorily provided the information that can explain such optical properties supremacy. Morphological measurements and its derived parameters like autocorrelation and height-height correlation functions have provided several clues that represent the superior grain structures of the composites. Besides, refractive index modeling through effective single oscillator model has strongly supported such analysis results favoring the superior microstructure in composite films.  相似文献   

7.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

8.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

9.
Composite optical thin-film materials have received a significant amount of interest in order to relieve the material constraints on refractive indices as well as reducing the number of layers required in optical coating design. Amongst others binary zirconia-silica composite thin films have attracted considerable attentions due to their several favorable opto-mechanical properties. In the present studies such a composite system under certain compositional mixings displayed both refractive index and band gap supremacy over pure zirconia films violating the most popular Moss rule. This unexpected evolution has several practical applications one of which can be directly employed in extending the range of tunability of the refractive index. Besides, the probing of such a novel evolution through the analysis of ellipsometric refractive index modeling and morphological correlation functions has revealed several novel as well as superior microstructural properties in the composite thin film systems. All these characterization and analysis techniques distinctly indicate a strong interrelation between the microstructural ordering and superior optical properties of the present zirconia-silica codeposited composites.  相似文献   

10.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail.  相似文献   

11.
Single-phase Ba(Mg1/3Ta2/3)O3 thin films were prepared by radiofrequency plasma beam assisted pulsed laser deposition (RF-PLD) starting from a bulk ceramic target synthesized by solid state reaction. Atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry were used for morphological, structural and optical characterization of the BMT thin films. The X-ray diffraction spectra show that the films exhibit a polycrystalline cubic structure. From spectroscopic ellipsometry analysis, the refractive index varies with the thin films deposition parameters. By using the transmission spectra and assuming a direct band to band transition a band gap value of ≈4.72 eV has been obtained.  相似文献   

12.
This paper reports the spectral properties of Nd3+:Ca2Nb2O7. The spectral parameters of Nd3+ in Nd3+:Ca2Nb2O7 crystal have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained. The parameters of line strengths Ωλ are Ω2=4.967×10−20 cm2, Ω4=5.431×10−20 cm2, Ω6=5.693×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 122 μs, 103 μs and 84.4%, respectively. The fluorescence branch ratios calculated: β1=0.425, β2=0.479, β3=0.091, β4=0.004. The emission cross section at 1068 nm is 6.204×10−20 cm2.  相似文献   

13.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

14.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

15.
This paper presents the chemical bath deposition of zinc selenide (n-ZnSe) nanocrystalline thin films on non-conducting glass substrates, in an aqueous alkaline medium using sodium selenosulphate as Se2− ion source. The X-ray diffraction studies show that the deposited ZnSe material is nanocrystalline with a mixture of hexagonal and cubic phase. The direct optical band gap ‘Eg’ for the as-deposited n-ZnSe films is found to be 3.5 eV. TEM studies show that the ZnSe nanocrystals (NCs) are spherical in shape. Formation of ZnSe has been confirmed with the help of infrared (IR) spectroscopy by observing bands corresponding to the multiphonon absorption. We demonstrate the effect of the deposition temperature and reactant concentration on the structural, optical and electrical properties of ZnSe films.  相似文献   

16.
Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 °C. As a kind of functional material, VO2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm2. The observed PT is associated with the optical interband transition in VO2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the dθ,? - state of valence band to the unoccupied excited mixed dθ,?-π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed dθ,?-π* - state of the metallic phase band.  相似文献   

17.
Tailoring of the refractive index of optical thin films has been a very fascinating as well as challenging topic for developing new generation optical coatings. In the present work a novel Gd2O3/SiO2 composite system has been experimented and probed for its superior optical properties through phase modulated spectroscopic ellipsometry, spectrophotometry and atomic force microscopy. The optical parameters of the composite films have been evaluated using Tauc-Lorentz (TL) formulations. In order to derive the growth dependent refractive index profiles, each sample film has been modeled as an appropriate multilayer structure where each sub-layer was treated with the above TL parameterizations. All codeposited films demonstrated superiority with respect to the band gap and morphological measurements. At lower silica mixing compositions such as in 10-20% level, the composite films depicted superior spectral refractive index profile, band gap as well as the morphology. This aspect highlighted the fact that microstructural densifications in composite films can override the chemical compositions while deciding the refractive index and optical properties in such thin films.  相似文献   

18.
The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV.  相似文献   

19.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

20.
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号