首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported the Ho:YAP laser pumped by the Tm:YAP laser. The Ho:YAP laser maximum output power was 4.91 W when the incident power was 10.1 W with the threshold of 2.63 W. The slope efficiency was 63.7%, corresponding to an optical-to-optical efficiency of 48.6%. The Ho:YAP output wavelength was centered at 2118.2 nm with bandwidth of about 1 nm. We estimate the beam quality to be M2 = 1.29.  相似文献   

2.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

3.
We describe a compact, broadly tunable, continuous-wave (cw) Cr2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 1018 cm−3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF2 prism and a single set of optics.  相似文献   

4.
A high-power continuous-wave (CW) diode-end-pumped intracavity-frequency-doubled red laser is reported here. The laser consists of a 0.3 at.% Nd:GdVO4 crystal as laser gain medium, a type II non-critical phase-matched (NCPM) LBO crystal or a type I critical phase-matched (CPM) LBO crystal as frequency-doubler, and a three-mirror-folded cavity. At incident pump power of about 41 W, maximum output powers of 3.8 W and 3 W at 671 nm are obtained with corresponding optical-to-optical conversion efficiency of 9.3% and 7.5%, respectively. During half an hour, the instability of the red beam is less than 3% at output of 3 W.  相似文献   

5.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

6.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

7.
By using two solid uncoated etalons, we present a diode-pumped linear-polarized single-frequency Tm:YAG laser operating at 2 μm. Placing one 0.1 mm F-P etalon at nearly Brewster angle in the cavity, the linear-polarization laser is achieved. The other 1 mm F-P etalon was turned in the range of very small angle, single-longitudinal-mode (SLM) could be obtained. The maximum output power of linear-polarized single-frequency laser of 60 mW is achieved at the wavelength of 2013 nm. The degree of the polarization is over 30 dB. Long-term frequency stability was also investigated, with the results of wavelength fluctuation about 2.55 × 10−13 m within 3 min and frequency change about 18.86 MHz, corresponding to a frequency stability of 1.27 × 10−7.  相似文献   

8.
We report an all-fiber actively Q-switched erbium-doped fiber laser, where the linear laser cavity mirrors are composed of two fiber Bragg gratings (FBGs). The laser oscillation wavelength could be tuned by this pair of temperature controlled FBGs. The Q-switching is achieved by an all-fiber phase modulation device. Using this system, we could obtain stable Q-switched laser pulses output, which could be optimized by tuning the reflection wavelengths of the two FBGs to be adjacent to each other. Instead of being modulated by the FBG filter in high-speed oscillation, this fiber laser system is operating in the Q-switched regime using an all-fiber phase modulator, producing a more stable laser output spectrum.  相似文献   

9.
A compact high power diode-side-pumped Nd:GdVO4 laser has been presented, which can generate an output power of 52 W at 1.063-μm for continuous-wave (CW) operation. The absorption characteristics of the Nd:GdVO4 in different pump directions is measured, which were used to optimize the diode-side-pumped Nd:GdVO4 laser head. The laser characteristics of both CW and Q-switched Nd:GdVO4 and Nd:YAG in are compared and it was found that Nd:GdVO4 may surpass Nd:YAG for high power laser application.  相似文献   

10.
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 μm is generated by a 5-ram long Tm:YAIOa (4 at.%) laser operating at 18℃ with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(1%):GdV04 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05/μm is achieved with a slope efficiency of 9%.  相似文献   

11.
We have demonstrated the stable mode-locked Nd:GdVO4 laser operating on the 4F3/2-4I9/2 transition at 912 nm. With a four-mirror-folded cavity and a semiconductor saturable absorber mirror for passive mode-locking, we have gained 6.5 ps laser pulses at a repetition rate of 178 MHz. The laser is diode-end-pumped, and the total output power from the out coupler is 128 mw at an incident pump power of 19.7 W.  相似文献   

12.
A low-threshold passively continuous-wave (CW) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor saturable absorber mirror (SESAM). The threshold for continuous-wave mode-locked is relatively low, about 2.15 W. The maximum average output power was 2.12 W and the optical to optical conversion efficiency was about 32%. The pulse width was about 15 ps with the repetition rate of 105 MHz.  相似文献   

13.
The realization of high repetition rate passively Q-switched monolithic microlaser is a challenge since a decade. To achieve this goal, we report here on the first passively Q-switched diode-pumped microchip laser based on the association of a Nd:GdVO4 crystal and a Cr4+:YAG saturable absorber. The monolithic design consists of 1 mm long 1% doped Nd:GdVO4 optically contacted on a 0.4 mm long Cr4+:YAG leading to a plano-plano cavity. A repetition rate as high as 85 kHz is achieved. The average output power is approximately 400 mW for 2.2 W of absorbed pump power and the pulse length is 1.1 ns.  相似文献   

14.
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 μJ, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz.  相似文献   

15.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

16.
Flashlamp-pumped high-gain fiber-bundle lasers consisting of multimode phosphate glass fibers have been investigated. By optimizing the fiber number and the outcoupling reflectivity in dependence on the pump conditions, high single-pulse energies in excess of 1 J as well as high-average-power extraction up to 100 W at a pulse repetition frequency of 100 Hz could be obtained from slim fiber-bundle lasers. Fiber numbers in the range of 150–250 and reflectivities between 35% and 50% have been found to provide reliable performance.  相似文献   

17.
A diode-pumped passively mode-locked Nd:YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%.  相似文献   

18.
A novel fibre ring laser is proposed and successfully demonstrated. By cascading a tunable bandpass filter with a bandstop filter to construct the desired narrow dual-transmission-peak spectrum, and employing a segment of unpumped erbium-doped fibre as a saturable absorber, a stable fibre ring laser is achieved at room temperature. The proposed laser can operate in dual-wavelength with the wavelength spacing of 0.48 nm and the extinction ratio more than 50 dB or switch between the two wavelengths by adjusting a polarization controller. The stability is investigated experimentally and explained theoretically.  相似文献   

19.
We realized, to our knowledge for the first time, laser emission in Pr:GdLiF4 at seven wavelengths: 522 nm, 545 nm, 604.5 nm, 607 nm, 639 nm, 697 nm, and 720 nm. The crystal was pumped with an excimer laser pumped dye laser at 468 nm. All laser experiments were carried out at room temperature. We also achieved pulsed room temperature laser oscillation of Pr:KYF4 at 642.5 nm pumped at 465 nm wavelength.  相似文献   

20.
DUAN Xiao-Ming, YAO Bao-Quan, ZHANG Yun-Jun, SONG Cheng-Wei, GAO Jing, JU You-Lun, WANG Yue-Zhu( National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号