共查询到20条相似文献,搜索用时 15 毫秒
1.
We numerically investigate the dynamics of soliton propagation at 850 nm in chloroform filled liquid core photonic crystal fiber (LCPCF) by using both finite element method (FEM) and split step Fourier method (SSFM). We propose a novel chloroform filled PCF structure that operates as a single mode at 850 nm featuring an enhanced dispersion and nonlinearity for efficient soliton propagation with low input pulse energy and low loss over small distances. We adopt the projection operator method (POM) to derive the pulse parameter equations which clearly describes the impact of fourth order dispersion on the pulse propagation in the proposed PCF. To analyse the quality of the pulse, we perform the stability analysis of pulse propagation numerically and compare our results of the newly designed chloroform filled PCF with that of standard silica PCF. From the stability analysis, we infer that the soliton pulse propagation in modified chloroform filled PCF is highly stable against the perturbation. 相似文献
2.
Ultra-short pulse compression using photonic crystal fibre 总被引:1,自引:0,他引:1
A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical properties of this novel medium in terms of high non-linearity and relatively small group velocity dispersion are shown to provide an ideal platform for the standard fibre pulse compression technique used directly on the nano-Joule output pulses from a commercial laser system. We report an order of magnitude reduction of the pulse width to 25 fs FWHM but predict a substantially improved performance with a dedicated fibre design. Good agreement is obtained with a simple model for the spectral broadening in the fibre. PACS 42.65.Re; 42.70.Qs; 42.81.Cn 相似文献
3.
We have fabricated a bandgap-guiding hollow-core photonic crystal fiber (PCF) capable of transmitting and compressing ultrashort pulses in the green spectral region around 532 nm. When propagating subpicosecond pulses through 1 m of this fiber, we have observed soliton-effect temporal compression by up to a factor of 3 to around 100 fs. This reduces the wavelength at which soliton effects have been observed in hollow-core PCF by over 200 nm. We have used the pulses delivered at the output of the fiber to machine micrometer-scale features in copper. 相似文献
4.
We have achieved, for the first time to our knowledge, lasing in a new type of telluride-tungstate glass host doped with neodymium: Nd3+:(0.8)TeO2-(0.2)WO3. Lasing was obtained at 1065 nm with two samples containing 0.5 mol% and 1.0 mol% Nd2O3. During gain-switched operation, slope efficiencies of 12% and 10% were obtained with the 0.5 mol% and 1.0 mol% doped samples, respectively, at a pulse repetition rate of 1 kHz. Judd-Ofelt analysis was further employed to determine the emission cross section σe at 1065 nm from the absorption spectra and lifetime data. The emission cross section from the Judd-Ofelt analysis came to 3.23 ± 0.09 × 10−20 cm2, in reasonable agreement with the value of 2.0 ± 0.13 × 10−20 cm2 obtained from the analysis of laser threshold data. 相似文献
5.
This paper considers the resonant nonlinear Schrödinger's equation with dual-power law nonlinearity. The G′/G-expansion method is applied to integrate this equation. The soliton solutions are thus obtained. Both constant coefficients as well as time-dependent coefficients are considered. The results for parabolic law nonlinearity fall out as a special case. 相似文献
6.
We have demonstrated a continuous-wave (CW) all fiber laser operation at 1558.4 nm of a diode-pumped erbium-doped PCF laser based on 9.6 m erbium-doped PCF. The maximum output power and the threshold of the fiber laser are 49.4 mW and 6.67 mW, respectively. We show that it is possible to achieve a high stability and beam quality laser, which has a great application potential in optical communication field in future. 相似文献
7.
J. Cascante-Vindas J.L. Cruz E. Silvestre A. Ortigosa-Blanch 《Optics Communications》2008,281(3):433-438
Experimental results on supercontinuum generation in photonic crystal fibre tapers using pump pulses of 7 ns duration at 532 nm are presented. Photonic crystal fibre tapers with the first wavelength of zero dispersion around 532 nm were fabricated. The generation of supercontinuum was investigated in normal and anomalous dispersion regimes. Supercontinuum spectra spanning more than 400 nm in the visible region are reported. 相似文献
8.
Short photonic crystal fibers (PCFs) with different tapered waist diameter are made to extend the continuum spectrum in the visible range. The diversification of output continuum spectrum with the diameter of the tapered waist is experimentally observed. An all fiber visible supercontinuum source with 1.88 W output is demonstrated in our experiments. To the best of our knowledge, it is the highest all fiber visible supercontinuum generation in tapered PCF, pumping by picosecond pulse at 1064 nm. The suitably designed short tapered PCF can extend the visible spectrum, while, how to preserve the tapered waist is crucial for the all fiber visible supercontinuum source in the practical applications. 相似文献
9.
Generation of InAs-surface-emitted terahertz radiation by application of an ultrashort pulse 1060 nm parabolic fiber amplifier source is reported for the first time. The fiber amplifier delivers 100 fs pulses at a repetition rate of 75 MHz and an average power of maximum 12 W. This new excitation laser for surface-emitters generates high brightness broadband THz radiation ranging from 100 GHz to over 2.5 THz. THz detection is demonstrated based on two-photon absorption at low-temperature-grown GaAs dipole receivers. 相似文献
10.
11.
We report on the generation of noise-like pulses with up to 120 nm bandwidth in a passively mode-locked erbium-doped fiber ring laser. By inserting a segment of slightly normal dispersion fiber in a mode-locked fiber laser cavity, we found that the spectrum of the noise-like pulse emission of the laser can be significantly broadened as a result of the four-wave-mixing and the soliton self-frequency shift effects in the inserted fiber. 相似文献
12.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold. 相似文献
13.
We report on a widely tunable ytterbium fs-fiber laser without dispersion compensation. The all-normal dispersion laser contains a spectral filter for wavelength tuning and for generating additional amplitude modulation to support the nonlinear polarization evolution as mode-locking mechanism. By tilting the interference filter the center wavelength of the laser can be tuned from 1015 nm to 1050 nm with a pulse energy up to 2.0 nJ. The pulses can be dechirped externally to 108 fs. 相似文献
14.
S. Reinhardt B. Bernhardt R. Holzwarth S. Karpuk W. Nörtershäuser C. Novotny 《Optics Communications》2007,274(2):354-360
We report frequency measurements at the rovibronic transition P(42)1-14 (772 nm) and R(114)2-11 (735 nm) from the electronic transition of the iodine molecule 127I2 with the help of a frequency comb as a reference. By using Doppler-free saturation spectroscopy a frequency precision in the 7 × 10−10 region is reached and two iodine cells both operated at 550-600 °C are compared. To relate our results to other measurements, the absolute transition frequency of the hyperfine structure line P(148)1-14 a1 at 780 nm with an already known transition frequency was also determined. 相似文献
15.
The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation at 1550 nm in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. Simulations show that single-polarization operation within broad wavelength range can be easily realized with the proposed structure. The wideband SPSM operation features, the low confinement losses, and the small effective mode area are the main advantages of the proposed PCF structure. A SPSM-PCF with confinement loss less than 0.1 dB/km within wavelength range from 1370 to 1610 nm and effective mode area about 4.7 μm2 at 1550 nm is numerically demonstrated. 相似文献
16.
A novel method of producing switchable tunable output that spans the S-, C- and L-bands is presented. The achievable tuning range is about 120 nm. The design consists of a wide band SOA, 1 × 16 AWG and an optical selectable switch in a ring configuration. The measured average output powers for S-, C- and L-bands for different output wavelengths are −7.0 dBm, −6 dBm and −6.5 dBm respectively. The SMSR for these wavelengths is about 72 dB. 相似文献
17.
A scheme to generate high speed optical pulse train with ultra short pulse width is proposed and experimentally studied. Two-step compression is used in the scheme: 20 GHz and 40 GHz pulse trains generated from a rational harmonic actively mode-locked fiber ring laser is compressed to a full width at half-maximum (FWHM) of ~ 1.5 ps using adiabatic soliton compression with dispersion shifted fibers (DSF). The pulse trains then undergo a pedestal removal process by transmission through a cascaded two photonic crystal fiber (PCF)-nonlinear optical loop mirrors (NOLM) realized using a double-ring structure. The shortest output pulse width obtained was ~ 610 fs for 20 GHz pulse train and ~ 570 fs for 40 GHz pulse train. The signal to noise ratio of the RF spectrum of the output pulse train is larger than 30 dB. Theoretical simulation of the NOLM transmission is conducted using split-step Fourier method. The results show that two cascaded NOLMs can improve the compression result compared to that for a single NOLM transmission. 相似文献
18.
19.
An improved 1 × 4 coupler based on all solid multi-core photonic crystal fiber is proposed and analyzed. The expressions to calculate the coupling length and the coupling efficiency are deduced based on the coupled-mode equations firstly. Then a full-vector finite element method (FEM) is used to calculate the coupling length and the coupling efficiency. Next, the propagation characteristics and the performances of the coupler are analyzed through using a full vector beam propagation method (BPM). Research shows that the results derived by FEM agree with that by BPM. The coupling length of the coupler is 4.1 mm at λ = 1.55 μm. A maximum coupling efficiency of 24.96% can be obtained. The coupling ratio is more than 22.5% over a wavelength range of 100 nm. The polarization-dependent loss at λ = 1.55 μm is equal to 0.73 dB. Finally, the influences of the micro-variation of structure parameters and the material refractive index on the working performances of the coupler are investigated. 相似文献
20.
S.K. Varshney N.J. Florous K. Saitoh M. Koshiba T. Fujisawa 《Optics Communications》2007,274(1):74-79
In this paper, we numerically investigate and optimize the profile of a photonic crystal fiber (PCF) that can eliminate the residual dispersion from the telecom link as well as can provide identical dispersion compensation over S + C + L bands. A full-vectorial finite element method combined with genetic algorithm is used to optimize the fiber’s profile as well as to accurately determine its modal properties. The optimized PCF exhibits a dispersion of −98.3 ps/nm/km with a variance of ±0.55 ps/nm/km from 1.48 μm to 1.63 μm (i.e., over 150 nm bandwidth) and a zero dispersion slope. Macro-bending loss performance of the designed PCF is also studied and it is found that the fiber shows low bending losses for the smallest feasible bending radius of 5 mm. Further, sensitivity analysis has been carried out for the proposed fiber design and it has been found that a ±2% change in the fiber parameters may lead to a ±8% shift of the dispersion from its nominal value. 相似文献