首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

2.
Planar two-dimensional photonic crystals can be combined with a one-dimensional Bragg mirror to control the quality factor and out-of-plane coupling of optical Bloch modes. We have investigated the optical properties of such structures fabricated on silicon. The photonic crystals are fabricated in the upper Si layer deposited on top of quarter-wave thick SiO2-polycrystalline Si layers. The optical properties are probed by the room-temperature photoluminescence of Ge/Si self-assembled islands as an internal source. We show that an enhancement of the quality factor can be obtained by controlling the thickness of the silicon upper layer in which the two-dimensional photonic crystal is etched and by controlling the air filling factor of the photonic crystal. Quality factors of 2200 around 1100 nm are obtained by this method for defect-free photonic crystals with a square lattice pattern. The experimental results are supported by three-dimensional finite-difference time-domain (FDTD) calculations of the radiated modes for the investigated structures.  相似文献   

3.
External random factors have a great influence on the fabrication of accurate photonic crystal, especially porous silicon-based photonic crystals. Compared with the binary photonic crystal, polybasic structure photonic crystal shows more stability and smaller effect of the random fluctuation. In this paper, we have fabricated a novel simple porous silicon polybasic Bragg's mirror combined with excellent specific antigen-antibody inmunoreaction as an immunosensor for determining Hydroxysafflor yellow A (HSYA), which is the main chemical component of Carthamus tinctorius L. The binding of HSYA and the polyclonal anti-HSYA antibodies causes red shifts in the reflection spectrum of the sensor, and the red shift was proportional to the HSYA concentration with linear relationship ranging from 1 to 3 μg mL−1 with a detection limit of 0.78 ng mL−1. Importantly, this research offers hope for development of a commercial porous silicon-based immunosensor for component determination of C. tinctorius L. or other antigens.  相似文献   

4.
Transmission characteristics of nonlinear one dimensional photonic crystal with a defect have been studied. GaAs/Si multilayer structure with a single defect has been simulated using transfer matrix method. In this study refractive indices of both layers have been taken to be dependent on intensity and wavelength simultaneously. It is found that central wavelength of defect mode change with intensity of wave. Average change in central wavelength of defect mode is 0.02 nm/(1 GW/cm2). This property can be exploited in the design of a single channel tunable wavelength division demultiplexer for optical communication.  相似文献   

5.
We present here the fabrication and characterization of single layer silicon photonic crystal mirror on a silicon-on-insulator wafer. By a combination of electron beam lithography, fast atom beam etching with deep reactive ion etching, silicon photonic crystal slabs are achieved on 260 nm freestanding silicon membrane and sandwiched with air on the top and bottom. Their high refractive index contrasts enable photonic crystal slabs function as dielectric mirrors for externally incident light. The optical performances of fabricated photonic crystal slabs can be tuned by varying the width of separation grooves or the air-hole size, which represents a significant advantage of offering various approaches for optical response control.  相似文献   

6.
We report self-collimating demonstration in planar photonic crystals (PhCs) fabricated in silicon-on-insulator (SOI) wafers using 0.18 μm silicon complementary metal oxide semiconductor (CMOS) techniques. This process is original in the context of self-collimating PhC. Emphasis was on demonstrating self-collimation effect through the use of standard CMOS equipment and process development of an optical test chip using a high-volume manufacturing facility. The PhC were designed on 230 nm-top-Si layer using a square lattice of air-holes with 270 nm in diameter. The lattice constant of the PhC was 380 nm. The 1 mm self-collimation was observed at the wavelengths of 1620 nm.  相似文献   

7.
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide, which is controlled through the thermo-optic effect. The effective footprint of the device is about 1000 × 500 μm2. The minimum insertion loss including the transmission loss and coupling loss is about 10.7 dB. The tuning bandwidth is about 17 nm, the average tuning efficiency about 6.11 mW/nm and the tuning speed about 24.5 kHz.  相似文献   

8.
In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.  相似文献   

9.
Laser-induced emission from rhodamine-B dye embedded in pseudo band gap opaline photonic crystals is discussed. The photonic crystals are fabricated using rhodamine-B doped polystyrene colloids and show 65% reflectance at the stop band centered at 604 nm. The reflectance of the crystal is increased to 74% by coating with a thin layer of gold. Both spontaneous and stimulated emissions of the dye are observed in the photonic stop band environment by exciting the crystal with the second harmonic (532 nm) of a Q-switched Nd:YAG laser. The thin layer of gold functioned as a high reflecting end mirror to the dye-doped cavity when the crystal is pumped from the substrate side. Angle-dependent suppression at the stop band wavelength is observed in the spontaneous emission of the dye. Spectrally narrow stimulated emission and lasing is achieved in the gold coated dyed PhC at a threshold pump power of 60 mW in a selective direction of 22° from the direction of excitation. By studying emission from several photonic crystals with different number of layers, it is concluded that a sharp threshold for lasing is not observed in uncoated photonic crystals when they contained fewer than 30 ordered layers and lesser than 70% reflectance.  相似文献   

10.
Microstructure and related properties of hydrogenated silicon samples, Si:H, treated at high-temperature (HT) up to 1270 K under hydrostatic argon pressure (HP) up to 1.1 GPa are investigated. To prepare Si:H, Czochralski grown 0 0 1 oriented single crystalline Si wafer with 50 nm thick surface SiO2 layer was heavily implanted with hydrogen using the immersion plasma source of hydrogen ions with energy 24 keV.The surface of HT-HP treated Si:H was characterised by scanning electron microscopy. Reflectivity pattern measurements in the wavelength range of 350-2000 nm have been performed to analyse their surface and bulk properties. The volume averaging method for a model of layer-like structure has been used to simulate the HT-HP treated Si:H. The analysis of Si:H samples suggests the multi-layer structure composed of Si, Si:H, SiO, SiO2, and of porous Si layers in the sub-surface region. The porous Si:H samples model is in good consistency with experimental data from reflectance measurements.  相似文献   

11.
In this paper, multilayer structures of porous silicon were fabricated by using electrochemical etching and characterized for its optical properties and surface morphology. Samples of monolayer of porous silicon were grown to study the characteristics of porous layer formation with respect to applied current density, etching time and hydrofluoric acid concentrations. Photoluminescence peaks of red emission at wavelength 695 and 650 nm were observed from multilayer porous silicon structures. By atomic force microscopy measurement, hillocks like surface were clearly observed within the host material, which confirmed the formation of pores.  相似文献   

12.
We theoretically study the optical torque on the layers in one-dimensional finite photonic crystal with birefringent defect layers. The fields in each layer are deduced by Berreman's 4 × 4-matrix method. We found out that the strong electromagnetic fields enhance both torque and force on the layers at defect mode. These investigations suggest an efficient method to construct the micro-motor driven by electromagnetic wave.  相似文献   

13.
Organic 4-methyl-4′-N’-methylstilbazolium tosylate, a new derivative of the stilbazolium tosylate family compound was synthesized by condensation method. The optical quality single crystals with dimension 5 mm × 4 mm × 2 mm were grown by slow evaporation technique at 40 °C. The crystal system and lattice parameters were found from single crystal X-ray diffraction studies. The optical transmittance, cut-off wavelength (402 nm) and band gap energy (3.09 eV) were estimated by UV–visible studies. The surface laser damage threshold study was carried out for MMST crystal using Nd:YAG laser. The third-order nonlinear optical susceptibility (χ3) for MMST crystal was estimated by employing Z-scan technique using 1064 nm laser.  相似文献   

14.
The present article describes novel highly nonlinear photonic crystal fibers (HN-PCFs) with flattened chromatic dispersion and low confinement losses. The proposed design has been simulated based on the finite-difference method with anisotropic perfectly matched layers absorbing boundary condition. It is proved that the design novel HN-PCFs is obtained a nonlinear coefficient greater than 45 W−1 km−1 and low dispersion slope −0.009 ps/(nm2.km) at 1.55 μm wavelength. In addition, results from numerical simulation show that the ultra-flattened dispersion of 0 ± 0.65 ps/(nm.km) can be obtained in a 1.36-1.62 μm wavelength range with confinement losses lower than 10−7 dB/m in the same wavelength range. Another advantage of the proposed HN-PCFs is that it possessed modest number of design parameters.  相似文献   

15.
By inscribing long period grating (LPG) in a photonic crystal fiber (PCF), optical filters for communication wavelengths can be fabricated. In this paper, by utilizing coupled-mode theory and enhanced improved vectorial effective index method, a design of bandstop filter based on optimal LPG parameters is presented where the optimized full-width half-maximum (FWHM), the number (N) and total length of gratings of LPGs (L) are determined. As a result, by the determination of optimized LPG parameters with an optimum length of Lopt=6.5 mm and optimum number of grating Nopt=27 inscribed in the PCF, a bandstop optical filter with FWHM=1 nm is designed.  相似文献   

16.
Anisotropic photonic crystal structures consisting of birefringent porous silicon layers with alternating porosity were fabricated. The in-plane birefringence formed as a result of anisotropic etching in Si(110) results in unique multilayered structures with two distinct photonic bandgaps for orthogonal light polarizations. Nonlinear optical studies based on the third-harmonic generation from these structures demonstrate variation in the symmetry of the nonlinear optical response.  相似文献   

17.
A high sensitive and compact refractive index sensor based on slotted photonic crystal waveguide (S-PhCW) is demonstrated. This design is worked on a Mach–Zehnder interferometer (MZI) configuration with S-PhCW as the measuring arm, which can be used to detect any changes in refractive index that correspond to different concentration of the measuring liquid. Combining the slow light enhancement in photonic crystal waveguide (PhCW) with the advantage of excellent optical confinement in slot waveguide, the sensitivity of this simple scheme can reach to 2.3 × 109 nm/RIU with the active region of only 1 mm long.  相似文献   

18.
In this paper, a new optical channel drop filter (CDF) using photonic crystal ring resonators (PCRRs) is presented. Using the two-dimensional (2D) finite-difference time-domain (FDTD) method in triangular lattice photonic crystal (PC) silicon rods, 100% forward dropping efficiency and a quality factor of more than 1000 can be achieved in third communication window while the resonant wavelength is 1550 nm. Through this novel (CDF), a multi-CDF operation with 100% drop efficiencies across all channels can be obtained. The proposed device could be used in future coarse wavelength division multiplexing (CWDM) communication systems.  相似文献   

19.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

20.
A light-trapping structure with textured morphology for thin-film solar cell is demonstrated in this paper. It is fabricated through Al evaporation, and has a root-mean-roughness (Rms) of about 120 nm and lateral width of about 1 μm for single bulge. A Mo layer is introduced to be a barrier layer. Subsequently sputtered amorphous silicon film is 100% crystallized by Cu induced crystallization. Reflectivity of samples with different silicon thickness is studied to reveal the light-trapping efficiency and the reflectivity as low as 10% is obtained with only 840 nm thick silicon film. This is a low-cost structure promising for future thin-film solar cells with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号